(=7 Programming
\ . / rrBeginners”

Mark Spencer, WABSME |\ -~ (00"

i

ARRL’s % .. ;

PIC Programming i
For Beginners {

CD-ROM
Included! |

Supplemental GO
L ChppobgRain
e e, Pl
AT ma e -

AV PSR

Author
Mark Spencer, WABSME

Editor :
Nancy G. Hallas, WINCY

aRAL'y
PE Programming
Far Boginners

Production Staff

Michelle Bloom, WB1ENT

Jodi Marin, KA1JPA
Maty Weinberg, KB1EIB

Sue Fagan, KB1OKW,
Cover Design

David Pingree, NTNAS,
Technical Illustrations

Copyright © 2010 by
The American Radio Relay League, Inc.

Copyright secured under the
Pan-American Convention

All rights reserved. No part of this work may
be reproduced in any form except by written
permission of the publisher. All rights of
translation are reserved.

Printed in Canada

Quedan reservados todos los derechos
ISBN: §78-0-97259-0-0892

Order number: 0892

First Printing

The MPLabP® software contained on the included
CD-ROM is reprinted with permission of the copyright
holder, Microchip Technology Incorporated. Ali rights
reserved. No further reprints or reproductions may be made
without Microchip Technology Inc’s prior written consent.

PIC® is a registered trademark of Microchip Technology Inc in the
US and other countries. PICDEM® is a trademark of Microchip
Technology Inc in the US and other countries.

Table of Contents

1. Infroduction

2. Inside the PIC16F676

3. Software and Hardware Setup
4. Program Architecture

5. Program Development

6. Working With Registers —
The Most Important Chapter

7. Instruction Set Overview

8. Device Setup

9. Delay Subroutines

10. Basic Input/Output

11. Analog to Digital Converters
12. Comparators

13. Interrupts

14. Timer 0 and Timer 1 Resources

15. Asynchronous Serial Communications

16. Serial Peripheral Interface
Communications

17. Working With Data

18. Putting It All Together

Appendix 1 Glossary

Appendix 2 Answers to Chapter
Questions

Appendix 3 Keyer Construction Manual

Appendix 4 PIC16F676 Include File
Contents

Index

CD-ROM Contents
1.MPLAB IDE Software

2. Device Documentation

3. Parts List and Specification
4.Video Files

5. Chapter Exercise Program Files

Foreword

Amateur Radio has a long tradition of what we affectionately call “homebrewing.”
Homebrewing simply means the act of building a piece of equipment with your bare hands,
often in the comfort of your own home. In the earliest days of Amateur Radio, homebrewing
was mandatory; there were no commercial products available. But even in this modern era of
click-and-purchase Internet shopping, many hams still prefer to build their own equipment
whenever possible.

One thing that has changed in recent vears is the nature of what we buitd. Hams are
increasingly attracted to the extraordinary potential of microcontrollers as tools in everything
from station accessories to transceivers. As a result, they're eager 10 learn how to program
these devices and put them to work.

In ARRL's PIC® Programming for Beginners, Mark Spencer, WA8SME, shows you how 10
“speak’ the language of microcontrollers. You’ll find that working with PYCs is surprisingly
easy, educational and, most of all, fun.

David Sumner, K1ZZ

ARRL Executive Vice President
Newington, Connecticut

March 2010

Acknowledgements
and Dedication

1 would like to acknowledge the contributions of you, the reader of this text.
As a life-long learner, you are my real inspiration. At times it feels like technology is
passing us by, but [am inspired by those who want to be more than just technology
users...and I thank you for that.
I would also like to thank Ron Cade, W6ZQ), who reviewed the draft of this book as
a student of microcontrollers. He kept me honest and true to my commitment to not
to assume the reader understands what [mean.

Mark Spencer, WASSME (and life long learner)

About the Author

Mark Spencer, WASSME, has been a ham radio operator for over 45 years and has also
held the calis G5EPV, DA1QY, and HL9AW. Mark is not sure if his interest in science

and technology fostered his interest in ham radio. of if his interest in ham radio fostered

his technical career path and interests. He has degrees in Metallurgical Engineering and
Communications. Originally from the Detroit, Michigan area, Mark entered education as a
second career following a 20 year career as an Air Force Officer flying T-38, B-52, U-2, and
TR-1 aircraft.

Mark is a self-described and practicing life-long learner, This passion for learning, and
helping others to leamn, supports both his professional and leisure efforts. He is currently
the ARRL’s Education and Technology Program (ETP) Coordinator. His primary ETP
responsibilities inctude developing curriculum leading toward wireless technology literacy,
providing assistance to teachers tmplementing ham radio and related content in their
school’s curriculum, managing the ARRL ham radio equipment grant program for schools,
and instructing teachers in wireless technology literacy during the Teachers Institutes.

Mark’s definition of compuler literacy came about during his combat experiences in Desert
Storm, and that vision for computer literacy has served as his compass in developing
instructional programs and in his writings. Though personally passionate about learning,
each and every personal endeavor has the dual purpose of facilitating the learning of
others...including this text.

Mark’s current ham radio interests include ham satellites and adapting microcentroller
technology to ham radio.

About the ARRL

The seed for Amateur Radio was planted in the 1890s, when Guglielmo Marconi began his experiments in wireless
telegraphy. Soon he was joined by dozens, then hundreds, of others who were enthusiastic about sending and receiving
messages through the ai—some with a commercial interest, but others solely out of a love for this new communications
medium. The United States government began licensing Amateur Radio operators in 1912,

By 1914, there were thousands of Amateur Radio operators—hams—in the United States. Hiram Percy Maxim, a
leading Hartford, Connecticut inventor and industrialist, saw the need for an organization te band together this fledgling
group of radio experimenters. Tn May 1914 he founded the American Radio Relay League (ARRL) to meet that need.

Today ARRL, with approxiumately 155,000 members, 1s the largest organization of radio amateurs in the United
States. The ARRL is a not-for-profit organization that:

B promotes interest in Amateur Radio communications and experimentation
W represents US radio amateurs in legislative matters, and
B maintains fraternalism and a high standard of conduct among Amateur Radio operators.

At ARRL headquarters in the Hartford suburb of Newington, the staff helps serve the needs of members. ARRL is
also International Secretariat for the International Amateur Radio Union, which is made up of similar societies in 150
countries around the world.

ARRL publishes the monthly journal OST, as well as newsletters and many publications covering all aspects of
Amateur Radio. Its headquarters station, W 1AW, transmits bulletins of interest to radio amateurs-and Morse code prac-
tice sessions. The ARRL also coordinates an extensive field organization, which includes volunteers who provide techni-
cal information and other support services for radio amateurs as well as communications for public-service activities. In
addition, ARRL represents US amateurs with the Federal Communications Comrission and other government agencies
in the US and abroad.

Membership in ARRL means much more than receiving QST each month. In addition to the services already
described, ARRL offers membership services on a personal level, such as the Technical Information Service—where
members can get answers by phone, email or the ARRL website, to all their technical and operating questions.

Full ARRL membership (available only to licensed radio amateurs) gives you a voice in how the affairs of the orga-
nization are governed. ARRL policy is set by a Board of Directors (one from each of 15 Divisions). Each year, one-third
of the ARRL Board of Directors stands for election by the full members they represent. The day-to-day operation of
ARRL HQ is managed by an Executive Vice President and his staff.

No matter what aspect of Amateur Radio attracts you, ARRL membership is relevant and important. There would
be ne Amateur Radio as we know it today were it not for the ARRL. We would be happy to welcome you as a member!
(An Amateur Radio license i1s not required for Associate Membership.) For more information about ARRL and answers
10 any questions you may have about Amateur Radio, write or call:

ARRL — the national association for Amateur Radio
225 Main Street
Newington CT 06111-1494
Voice: 860-594-0200
Fax: 860-594-0259
E-mail: hq@arrl.org
Internet: www.arrl.org/

Prospective new amateurs call (toll-free):

800-32-NEW HAM (800-326-3942)

You can also contact us via e-mail at newham @arrl.org
or check out ARRLWeb at www.arrl.org/

Introduction to
Programming
Microcontrollers

1-2

Chapter 1

If you look around the room, you will probably see a number of items within the
room that are controlled by microcontrollers. These small, inexpensive yet powertul,
dedicated computers are in virtually everything that we use in our daily lives from
microwave ovens, TV and other appliance remote controls, heating thermostats,
entertainment systems, clocks, to even home pregnancy tests and electronic tooth brushes.
Microcontrollers have a ot of utithty for the casual electronic enthusiasts as well as
the professional engineer. The purpose of this book, ARRL’s PIC® Programuming for
Beginners, 15 t0 get you started on a journey to explore and use the potential of these
devices.

If you are an old hand at basic electronics, you probably have spent hours putting
together some electronic device to accomplish some task using discrete components in
an analog circuil, for instance an oscillator, or timer, or some sort of driver for a visual
display. There is a lot that you can do with analog circuits using the many (and sometimes
expensive and hard to comne by) individual components needed to create the circuit. In
the end, the circuit probably worked with some fine tuning and adjustment, and if your
design was quality, the circuit may have stayed in “tune” for quite a while.

The digital revolution has changed the electronics paradigm, and now you can
do many of the things you used to do with analog circuits with digital technology
better, faster, cheaper and more flexibly. You can’t do everything with digital, but you
sure can do some incredible things that analog circuits just couldn’t do. The addition
of microcontrollers into the equation has made your access to the capabilities of
digital technology even easier. It just takes some effort and study to get started using
microcontrollers, but once you do over-come that first hurdle, not only your creative
juices start flowing, but you will be able to do something about it, digitally.

I have had to make some assumptions about you, the reader of this book.

1) T assume that you know the basics of electronics, i.e, how to identify different
components, know how to determine component values, know the basic function of

the various components, can interpret a circuit diagram, and can build circuits on a
prototyping board based on those circuit diagrams.

2) 1 assume that you know sorme basic electronic vocabulary, i.e., current, voliage,
frequency, period, cycle, comparator, analog and digital.

3) I also assume that you have some basic knowledge of computer programming
and some of the vocabulary associated with computer programming, i.e, understand the
meaning of variable, constant, label, instruction, command, opcode, oprand, program,
program code, goto and loop. 1 do not assume that you are a proficient computer
PTOSTAIINEL.

4} Finally, [assume that you have a working knowledge of number systems, i.e.,
decimal, hexadecimal, and binary. You won’t be doing extensive mathematics using these
different numbering systems, perhaps just some simple addition and subtraction. There
are two algebra level formulas presented in one of the chapters — that will be the extent
of the mathematics content of the boak.

Text Conventions

Book Structure

Here are a few text conventions that I am using in the body of the book:

*The mnemonics that refer to the registers and individual bits within registers will
be in UPPER CASE LETTERS (with the exception of the working accumulator register
which will be referred to in lower case letters — W-register).

sThe mnemonics that make up the instruction ser (opcodes) that are used in programs
will be in all lower case letters.

e An instruction refers to a line of program code that includes an opcode, the
programming instruction, and oprand, the register location or memory location thal is
being sensed, modified or supplying a value (if the oprand is required).

eDecimal numbers in the program listings will be immediately preceded with a
decimal point (.), i.e., the number 123 will be noted as .123 to identify the number as the
decimal form.

sHexadecimal numbers will be listed with 0x preceding the number, i.e., 0xla.

sBinary numbers will be listed with the letter b preceding the binary digits between
apostrophes, i.e, “b01001001”. The binary number may be truncated to represent a
portion of an 8-bit number, i.e., “b1111” for the lower nibble of a byte.

eWhen the words sef or clear, and variations of those words, are nused in the context
of the state of a register bit or the voltage stute on an input/output pin, the words will be
in all capitals. The SET state of an 1/0 pin would be logic high or +5 V, the CLEAR state
of an /O pin would be logic low or 0 V (ground).

The structure of this book is based on a building block approach. The material presented
in each chapter builds on the material in preceding chapters. So if you are going to skip
around the book to focus on those topics that interest you most and you find something
missing, go back and check in preceding chapters and you may find the background you
need. It is important to understanding how to use microcontrollers that you have a firm grasp
of the hardware inside these little computers, therefore the opening chapiers of the book
will explore the hardware architecture. Your inferface between the hardware of the device
and the programs that you will be authoring to exploit the capabilities of that hardware is a
set of memory locations called special function registers. The next section of the book will
focus on these registers and how to manipulate them. Chapter 6 is titled with the caveat of
being the most irportant chapter, this was not a trivial use of that caveat. Spend some time
on Chapter 6, it will be time well spent. Once you have an understanding of the hardware

Introduction to Programming Microcontrollers 1-3

and the registers you will use to work with that hardware, the remainder of the book looks at
developing the computer programming code 1o access the various resources at your disposal
inside the microcontroller.

I have made a pledge to you, that T will avoid the tendency of assuming that you
understand. 1 hated those college professors who would at some juncture in a lecture say,
“and it 1s intuitively obvious to the most causal observer that this last point leads to the
next very important point without further explanation.” This is not to say that I will not
make this mistake. [know that some points in the book will take some concentration and
study 10 gain an understanding of the information being presented. T will try my best to
present the material as clearly as I can without cluttering that clarity by over simplifying
or beating a trivial point to extinction.

There are as many ways to write program code as there are programmers writing
code. I know for a fact that the code examples presented in this book are not the most
efficient use of valuable memory space, nor is the code designed to execute as efficiently
(as fast) as possible. The programming approach I choose to take in this book is what
[call the “brute force programming method.” The code was developed to facilitate
understanding, nat for efficiency. One of my goals is to get you to write your own code
as quickly as possible, writing efficient code will come over time, and frankly that is a
never-ending quest of my own.

The writing and reading of this book 1s a personal connection between you and me.
I wrote this book pretending that I am at your shoulder providing some instruction along
the way. Therefore 1 avoided writing in the third person and [use pronouns like you, me,
we and us. This is a journey that is shared between us so please excuse any politically
incorrectness in my writing.

Procedure for Reading and Studying This Book

Related to the context of this book, it is designed (o be read with the exercise
programs displayed on your computer screen. There are screen shots of various steps of
manipulating the MPLAB® IDE development software and using a simulator to study
the program code in detail, but you should not depend on these screen shots nor the text
alone, you should have the book open along side of your computer where you are running
the appropriate application.

The book comes with a CD-ROM that contains the program exercises addressed
in the various chapters, some background manuals and supplementary reading that you
should print out before they are referenced in the chapters, and some short video clips
that you can run on your computer to reinforce those topics that are more instruction
intensive. You will be able to use the programs as they are on the CD to load the
programs into the microcontroller, however, you will not be able to modify those
programs and save them back to the CD. If you want to experiment with the programs,
and I highly encourage you to de so, you will have to copy the programs onto your
computer’s hard drive, and then you will have full access to the program contents. The
book is also based on a set of hardware that you may have elected to purchase with the
book. If you chose not to purchase the hardware, that is okay, because there is nothing
special or unigue about the bits and pieces. The only thing is that your hardware probably
will not match the illustrations in the book.

Challenge in Rapid Change; Keeping Current

Writing a book such as this is a challenge in the rapidly changing technological
enviroriment we live in today. By the time it takes to author a bock, the technology upon
which it is based has probably already changed to the next generation. The basic concepts

1-4 Chapter 1

are still valid, but the specific examples of software and hardware used may have undergone
some revision. In light of this fact, [have attempted to take a snapshot of the technology, and
have provided a version of the development software used in the illustrations of this text on the
CD-ROM with the permission of the owning company Microchip. The development program
MPLAB IDE has been and will continue to be improved and revised beyond the version

8.1 that is on the CD-ROM. Microchip has done an excellent job of making their software
revisions backward compatible to help alieviate problems with software revisions. [encourage
you to use the software version that is on the CD-ROM while you are using this text, but then,
go to the Microchip Web site and dowrnload the latest revision of MPLAB [DE as you continue
your career with micrecontrollers. This strategy will make the illustrations in the text match
what you will see on your computer screen.

The same caveat holds true for the programming hardware. The text is based on the
PICKir™ 2 hardware. There are other Microchip programmers available and no doubt
there will be an upgrade to the PICKIt 2. This is not a big issue, again because of the
backward compatibility built into Microchip products. It i$ just a simple matter to select
the programming hardware you have in the configuration menu items of MPLAB IDE, and
you will be all set. The basic code will remain unaffected.

So— I don’t know about you, but 1 am anxious to get started.

Introduction to Programming Microcontrollers 1-5

Inside the
PIC16F676

Objective: To review the basic capabilities and internal architecture of the PIC16F676 device to
provide the context for subsequent chapters. The basic functionality of the PIC16F676 and the
memory resources that are used to set up the device and store the program will be introduaced.

Reading: PICI6F630/676 Data Sheet, pages 1, 2, 5-8.

The PIC16F676

i encourage you to do a quick read-through of the assigned pages from the
PICI6F630/676 Data Sheet, but do not get discouraged by the amount of detail presented
in just a few pages. The purpose of this text is to focus your attention on, and simplify, the
most relevant details required for the beginning PIC-MCU programmer.

The PICL16F676 is a 14-pin, 8-bit micrecontroller. If you look at the device diagram
and also look at the device itself, it will be obvious that it has 14-pins (see Figuare 2-1 and
Figure 2-2). It is an 8-bit device because the internal architecture of the deviee allows
it to handle one-byte of data or information at a time. The device can handle data and
information greater in length than one-byte by proper, and more advanced, programming
techniques that are beyond the scope of this text.

Microcontroller Functions

The PICI6F676 1s a good device for learning about basic MCU programming
because it contains many of the basic electronic functions that make MCUs so powerful.
These functions include input/outpur (I/0) pins for both digital and analog sources,
internal and independent timers for counting and timing events, multiple analog to digital
converts (ADC) to allow the MCU to work with analog voltage sources and an analog
compararor for comparing two veltage sources. (The sister device to the PIC 101676, the
PICI16F630, differs because it Jacks the ADC converter features that are in the PIC16F676
device.} To accomplish this level of performance, many of the 14-pins of the device serve

vdg —= (]

RAST1CKIOSC/CLKIN ~a— (2
RA4T1G/OSCUANSICLKOUT ~—» (|
RA3MCLRNVpp — (|

RC5 —~e—a (]

RC4 —~—— (|5

ARRL0485

RCI/ANT ~e—— (|0

e 14,{' —~~—— Vss

) ~—— RADANO/CIN+ICSPDAT
)~ RATANI/CIN-VrelICSPCLK
' 1.15) ~—— RA2/ANZ/COUTITOCKIANT
G L) ~— RcOiaNg

g‘?' a3 RC1IANS

-]) =——= RC2ANG

Figure 2-1 — PIC16F676 Pinout.

2-2 Chapter 2

Figure 2-2 — PIC16F676.

multiple purposes. Two of the pins are dedicated to provide power for the device; pin-1 is
for Vg (+5 V) and pin-74 is for V; or ground.

As you explore integrated circuits you will find that device power sources are
indicated in various ways and this can cause some unnecessary confusion. For instance,
here you will see the positive voltage source listed as Vgq, in other cases you will see
the positive voltage source listed as V.. You will also see V,,, V.., or simply GND or
ground for the negative voltage source. The different designations come from the internal
electronic architecture of the integrated circuit and the designation depends on if there
18 an n-channel FET or an NPN transistor in the ciccuit. If there is an n-channel FET,
the positive voltage source is designated as V, for the voltage supplied to the top of the
n-FET drain resistor and V for the voltage supplied to the bottom of the n-FET source
resistor. If there is an NPN transistor, the positive voltage source is designated V for
the voltage supplied to the top of the NPN collector resistor and V,, for the voltage at
the bottom of the NPN emitrer resistor. If this 1s not confusing enough, it really gets
convoluted when there is a mix of NPN, n-FETs and p-FETs 1n the circuit. The bottom
line and most important thing to remember is that V 3, or V. refers to the most positive
voltage and V to the most negative voltage. You will alse see GND or ground used (o
refer to the negative voltage source.

Microcontroller Flexibility

The other 12 pins of the device serve different purposes as assigned by the
programmer (you) when the device is set up at the beginning of the program. There will
be extensive discussion on setting up the MCLU in later chapters of the book because the
example exercises throughout the text will demonstrate the use of each of the MCU basic
functions. For instance, you can set up the PIC16F676 pins /2 and 13 to be a comparator
to compare two analog voltages relative to each other, pir 4 to be digital input to detect
when you close a switch, pin 9 to be an ADC izput to measure a voltage applied to the
pin, and all the other pins as digiral output to dnve indicator light emitting diodes (LEDs).
Each of these functions and the associated programming that will make the functions
work for you will be covered in dedicated chapters in the text. For now it is important to
realize that there is a tremendous amount of flexibility at your disposal inside the MCU
that is limited only by your imagination and programming ability.

Internal Functional Blocks

The external 14-pins of the device are how you connect the PIC16F676 to the outside
world, now let’s take a look at what is going on inside the PICI6F676, at least pictorially.
Take another look at Figure 1-1 on page 5 of the Data Sheet. This is a detailed block
diagram of the internal workings of the device and how these internal functional blocks
are interrelated. As you gain more experience with the PIC16F676, the more detailed
diagram of the Data Sheet will make more sense. But for now I would like you to refer to
the simplified diagram depicted in Figure 2-3 for the following discusston.

External I1/0 Pins

The external /O pins are divided into two banks of 6-pins called PORTA and
PORTC. Other, more capable MCU devices that have more /O resources would have
added ports designated PORTB and PORTD. The individual pins within the ports are
designated RAQ through RAS (6-pins) and RCO through RCS. You will need to be careful
not to confuse the physical pin number with the actual port pin designation that will be
used during programming. For instance RAQ is the physical pin 13 of the device. If you
wanted to connect an LED 1o RAQ, you would make a physical connection between

Inside the PIC16F676 2-3

Programs Device Set-UP
8-Laval 8ank0 Bank1
Stack Core Peripheral
FLASH General «—
1xx14 Purpose «—
Program Registers *—
Memory
> RAOD
RA1
< —
= “ RAZ
1
Instruction 8 < RA3
Register
8 gl - RA4
3
Q
E Instruction ’ RA3
= Decodar
g |
g ! —> RCO
I Actions
Performed G RCH
| Timer 0 | Timer 1 o
— < RC2
[and
o RC3
a
) - RC4
¢ > RCS
Aralog to Digita! Anglog
Converter (ADC) Comparator
X X X X 3
Y 3 4 4 F
<) PRPOPOODS DO
€ TZEZEE7202028282 2 2 3 ARRLO4S9
OO = =00 A W P n PG WD Y ¥ S‘

Figure 2-3 — PIC16F676 Overview.

pin-13 of the device (through a current limiting resistor, LED, and ground). Then in
your program, to turn on the LED connecied 1o pin-13, you would use the following
programming instruction:

bsf PORTS, 0

The opcode bst SETS the specified bit (bit 0 (zero) of the referenced port,
PORTZ). SET means setting the voltage on that pin to the high value which is +5-volts.
CLEARING the bit means setting the voltage on that pin to the low value or ground.
There will be much more on programming throughout the text so don’t get concerned at
this point. Just remember that there is a difference between the physical pin number and
how that pin is referred to in the program.

Uses of Pin RA3

The arrows in Figure 2-3 associated with the individual port pins indicate that data
can go either into or out of the pin with the exception of RA3 which is input only. Pin

2-4 Chapter 2

RA3 serves three special purposes: for putting the PIC16F676 into the programining
mode, it serves as the device reset pin and it can also be programmed to receive digital
input. Because of these special uses while the device 1s operating, there are restricted
capabilities for this particular pin that must be kept in mind while you are developing
your project.

Additional 1/0 Pin Purposes

As mentioned above, the I/O pins serve many purposes as dictated by the
programmer. This capability is indicated pictorially m Figure 2-3 with the comparator
and ADC blocks. There is one comparator module with two pins RAO and RA] that
can be software assigned as analog inputs and one pin, RA2, that can be assigned to be
the comparator output. There are eight 10-bit ADCs, four on each port that are software
assigned to RAQD, RAL, RAZ, and RA4 (RA3J is limited and therefore does not have ADC
capability) and RCO through RC3.

These are the MCU resources available for communicating with the outside world.
There are other MCU resources that are strictly used inside the device.

Internal MCU Resources

The two internal timer modules TinerQ and Timerl perform powerful functions.
These timers can have separate and independent clock sources and can be configured
as timers or counters as defined by the programmer. This allows thetimers to monitor
specific I/O pins and take some programmed action at the expiration of a specified time
interval or after a specified number of events while the MCU is doing other programmed
tasks. For instance one of the timers can be used to “wake-up” after a specified time
after the MCU is put to sleep, or placed in a low power state. Or a timer can be used to
interrupt the MCU while it is performing some other task to send out serial bits to an /O
pin. This allows the MCU to perform other tasks and only dedicate resources to send out
serial data when needed.

Macro Yiew of the Memory Architecture

The MCU memory will be covered in detail in a later chapter, here we will 1ake a
macro view of the memory architecture. There are two blocks of memory depicted in
the block diagram in Figure 2-3. The memory block labeled Device Setup consists of
96-bytes of random access memory (RAM) made up of byte sized registers. The bits
within the individual registers are used to assign functionality to the device resources. For
instance, setting the appropriate bits in the TRISA register determines if the I/O pins of
PORTA are going to be input or output {either high (1} for input or low (0) for output).
The area labeled General Purpose Registers is space for temporary storage of information
used while the program is being executed. The memory block labeled Programs is where
vour program code will be stored.

Program Execution

Once your program is installed in the MCU memory, the program will begin
execution {running) when power is applied. The first instruction is fetched from the first
prograrn memory location. That instruction is then decoded. And finally, actions are taken
based on that decoded instruction. The process is started over again with the fetching of
the next instruction. The action could be making pin assignments, doing some math on
data, reacting to timer or pin inputs, or just about anything you want to happen as dictated
by the program you write. That process is the reason for this book.

Inside the PIC16F676 2-5

Summary

Inside the PIC16F676, there are two ports of six I/O pins each. The functions of
these I/0 pins are dictated by the programmer by seting the individual bits of a set of
controlling registers that are located at specified memory locations within the device’s
RAM. The functions performed by the MCU include basic input/output, comparator,
and ADC. There are two internal and independent timer modulates that can be used to
allow the MCU io do multi-tasking. There is a bank of RAM where device resource
configuration information is stored. There 1s a bank of working RAM where the
program is stored. And finally, program instructions are fetched from the program RAM,
interpreted, and actions taken based on the interpreted instruction.

By now you are probably anxious to do some actual programming of an MCU
to accomplish something. The next chapter will cover the installation of the software
(MPLAB® IDE) that you will use to develop your programs and install those programs in
the PIC16F676. Once the programs are loaded into the MCU, the device is installed into
the prototyping circuits you will construct to explore the power of the MCU.

Review Questions

2-6

Chapter 2

2.1. What is the physical pin assigned to PORTA RA37
2.2, What is the purpose of the comparator module?
2.3. What is the physical pin assigned to the ADC channel AN5?

2.4. What is the bit resolution of the ADCs within the PIC16F6767

2.5. How many internal general purpose timers are available in the PIC16F6767
2.6. How much RAM is available for your programs?

2.7. Ouce a PIC16F676 is prograramed, how long can you expect that program to be
retained in the device (if it is nor over-written by another program)?

Software and
Hardware Setup

Objective: To install the MPLAB® IDE software on vour working computer and explore the basic
software functions. To construct the prototyping board hardware that will be used for the exercises
in this text. Finally, load the First Program project into MPLAB [DE, build and then run the
program with the PIC16F676 installed in circuit o test the MPLAB IDE software installation and
the prototyping board setup.

Reading: PICI6F630/676 Data Sheer, pp 81, 82, and 84.

Microcontroller Development Tools

Microcontroller development wols are used by programmers w author, debug,
stmulate and fest, and load programs into MCU devices, (Microcontrollers). The
Microchip PIC® microcontrollers are supported with a number of development tools that
are orchestrated under the umbrella program called MPLARS Integrated Development
Environment (IDE). Under this programming environment, the programs that will be
introduced and used in this text are the MPASM™ Assembler and the MPLAE SIM
Software Simulator. The MPLAB IDE allows you to write your programs. The MFPASM
Assembler compiles the programs you write into machine language that are then loaded
into the MCU device for execution. During program development, the MPLAB Simulator
allows you to test and debug your programs in software before they are compiled and
loaded into the MCU.

Development Tool Updating

Installations

3-2

Chapter 3

The development tools are constantly being upgraded and improved at a very rapid
rate. The latest program updates are usually available from Internet-based resources for
download into your computer, MPLAB IDFE is no exception. Though the updates make
it easy to keep the software as up to date as technology allows, these timely updates
become problematic when the software is used as the basis of instructional material as
in this text. It is impractical to be able to keep pace with the rapid software updates in
printed material. Consequently, this text is based on a snapshot of the software and device
documentation at the time the text was written. The version of the MPLAB IDFE used to
generate the programs and graphic illustrations in this text is Version §.10 and this version
is included on the CD-ROM that accompanies this iext. There is also a copy of MPLAB
IDE on the CD-ROM that is included with the PICKit™ 2 Development Programmer that
you probably have purchased for use with this text. That software version is undoubtedly
the most current version when the hardware was packaged. These software upgrades are
generally downwardly compatible so if you use a version of MPLAB [DE that is more
recent than the Version 8.10 used in this text, in all likelthood there will be no problems.
Likewise if you use development hardware other than the PICKit 2, for instance
PICKIit™ 1, PICKit™ 3, or PICSTART®, only very minor modifications in the MPLAB
IDE setup will be required. You are encouraged to use the MPLAB (DE Version 8.10
that 1s included on the CD-ROM while you are going through this text, then go to the
Microchip Web site and download the most recent version of the software as you continue
your tenure working with Microchip PIC MCUs,

With this caveat in mind, install the MPLAB [DE Version 8.10 on your computer
from the MPLAB Software/Software directory on the CD-ROM. You start the
installation by double-clicking the Install_MPLAB_v810) icon. Follow the standard
instatfation prompts. During the installation, accept the default directories recommended.
Using the default directories will allow you to locate specific files needed later when the

programming projects are set up (in particular, you will need to locate the
pl6f676.inc file).

Install a PIC16F676 device in the PICK|t 2 board making sure that
you have the notch that denotes the top of the device aligned with the
sotch in the IC socket of the board. Also, you will be using the upper
14-pins of the socket for the PIC16F676, the bottom 4 pins are used
with larger devices. Plug the connecting USB cable into your computer
and let the computer install the appropriate drivers. You raay have to
insert the CD-ROM for the PICKit 2 board in the drive and navigate to
the appropriate directortes to install the drivers. The documentation that
came with the PICKit 2 board will provide guidance on installing the
drivers if there is trouble.

Launch

After you have connected the PICKit 2 hardware, installed the proper
USB driver, and completed the program installation for MPLAB IDE —
launch MPLAB IDE. Have the program running during the following
brief overview of the program’s operation.

Overview of MPLAB-IDE Operation

You will notice that the MPLAB IDE has the classic look of
a Windows® application with a menu bar that includes iconic
representations of program features. If you move the mouse pointer and
dwell over an icon, there will be a hint displayed for that icon. Clicking
on the icon will Jaunch the selected action. You can also accomplish the
same thing by using the drop down menu options.

Common Operating Icons

Move the mouse pointer over the icon that is
depicted in Figure 3-1. This is the OPEN PROJECT
icon. A project is an umbrella file that contains the
references to all the individual files that collectively
are used to build a compiled
program that 1s eventually
loaded into the MCU device.
The project also includes the
simulator and debug windows
that you set up and use during
program development. You
will be asked to use this icon
in future chapters to load
projects into MPLARB IDE for

i b i Now click on the OPEN
L ,JJ PROJECT icon and navigate

to the Program Files/Ch 3
Program/First Program on
the CD-ROM. Click on View/

= - - =

T - i aum Project 1n the menu bar. This

Figure 3.2 — First Program Project File Contents Display. will display the file contents of

Software and Hardware Setup

the project (Figure 3-2). You will see the .asm file which contains the program code and
the .inc file which contains defines and constants that are particular to the device you are
working with. In addition, loading this project will generate some additional icons in the

== menu bar.
re 23 B Move the mouse pointer over the icon that is depicted in Fignre 3-3. This is the
BUILD ALL BUILD ALL icon, Clicking on this icon will cause MPLAB [DE to usc the MPASM
Icon. Assembler to compile to program and create a machine language version of the program

ready for download in the PIC16F&76. The program should compile without error, if
there were errors; those errors will be listed in a dialog window.

Move the mouse pointer over the icon that is depicted in Figure 3-4.
This is the RUN icon. Clicking on this icon will cause MPLAB IDE to use the
MPLAB SIM Simulator to run the program code in software. You would use
this icon along with breakpoints and Watch windows to anatyze and debug
your program’s performance.

Move the mouse pointer over the icon that is depicted in Figure 3-5.
This is the ANIMATE icon and is similar in function to the RUN button. The
ANIMATE function will step through the program execution pausing on each
instruction for a specified time period allowing you to follow along as the
program is being executed step-by-step.
= e = Move the mouse potnter over the icon that is depicted in Figure 3-6.
Figure 3.5 — ANIMATE Icon. This is the RESET icon. While running the program under the Simulator, the
program can be reset to the beginning instruction of the program code by
clicking on this icon.

Move the mouse pointer over the icon that is depicted
in Figure 3-7. This is the OPEN FILE icon and allows you
10 open a file. This icon is used primarily for accessing
other program files that contain code that you want to cut
and pasie into the current program file, similar to what you
do in standard word processing.

Move the mouse pointer over the icon that is depicted in Figure 3-8. This is the
SAVE WORKSPACE icon and allows you to save the current configuration of the project
that you are working with, including Watch windows. You will be prompted if you would
like to save the workspace when you attempt to close the project even if vou had used this
icon.

Move the mouse pointer over the icon that is depicted in Figure 3-9. This is the NEW

A [

W

Figure 3.7 — OPEN . } . o
FILE lcon. PROJECT WIZARD rcon and the wizard will lead you through the steps needed (o initiate

the development of a new programming project.

The following icons allow you to access the memory of the device that
e =g is plugged into the PICKIit 2 IC socket. Move the mouse pointer over the
liRelease &4 i EHA | “ @ icon that is depicted in Figure 3-10. This is the READ TARGET DEVICE

-:-; MEMORIES icon. Click this icon and the program contents in hexadecimal
T notation will be listed in 4 window. To view the Program Memory window,
Figure 3.8 — SAVE WORKSPACE click on View/Program Memory in the menu bar and scroll down to the
lcon. end of the program. Right now this program listing will be meaningless, but
there is one important memory location that I want you to view. Each MCU
device is tested in the factory before it is released for purchase. One of the
tests is to calibrate the internal oscillator circuit. The calibration value is

: : = 4 then stored in the last memory location of the device memory for later use in
- _ e F your program to calibrate the internal oscillator. In this case, the calibration
Figure 3.9 ~ NEW PROJECT value is 0x2¢ (Figure 3-11). The PIC MCU programming purist will record
WIZARD lcon. this value on the case of the MCU in the event the value is lost through

3-4 Chapter 3

Db T s D Dm0
_,'T’_____"_.__.._......—._._

S foad target device memories § —I
|

Figure 3.10 — READ TARGET
DEVICE MEMORIES fcon.

reprogramming or erasing the device (more on that later). 1 am pointing out
this feature of the MPLAB IDE so that in the future, it you have a device that
suddenly stops working, you can check this memory location to see if the
oscillator calibration value has inadvertently been corrupted. In this case the
memory location would probably contain the value of 0x00h. If this were to
happen, the device is still partially usable, the internal osciliator will operate,
however it would not be calibrated. If the device had been erased,

IFD
3FE

1074 e fzc=p1%
{ | E {32<C 1§

the calibration value would also have been erased and you would see
the value of 0x00 as shown in Figure 3-12.

E:D!—e Hex || Mackine Symbaic |

PICIEFETS poii W0

DO NOT CLICK THE MOUSE BUTTON IN THIS NEXT

s@cT |

Figure 3.11 — Stored Calibration Value.

DEMONSTATION. In fact, just to be sure that nothing happens
inadvertently, remove the PIC16F676 device from the PICKit 2 IC
socket. Move the mouse peinter over the icon that is depicted in Figure
3-13. This is the ERASE THE TARGET DEVICE MEMORIES icon.

3IEF { coon |

Dpcode Hex || Macking Symbeke |

AICIRa e i el zdce

There 15 no real reason for you to ever use this icon. The device program
memory 1s over-written when a new prograr is loaded into the device.

Figure 3.12 — Calibration Value Erased.

e — — ——
| BmRERT AL E

As mentioned above, the internal escillator calibration value is erased
when the device is erased which would hmit the utility of the device.
There are other means to protect your code other than erasing the
Progran memory.

[Reinstall the PIC16F676 device in the PICKIit 2 IC socket.

device mes ::"-"‘-i.j:

Move the mouse pointer over the icon that is dépicted in Fig-

l BErase the targst

Figure 3.13 — ERASE THE TARGET DEVICE

MEMORIES lcon.

o~ = = =
(3P B teipos F£71 8

r . |:r ogram the target de '.:r—h

Figure 3.14 — PROGRAM THE
TARGET DEVICE lcon.

' ure 3-14. This is the PROGRAM THE TARGET DEVICE icon. You
will use this icon to send the compiled program code to the MCUJ
device memory. First click on the BUILD icon to assemble the First

Program code and then click on the PROGRAM icon to load the program into

the MCU. The device is now ready for installation into the circuit. But before

you do that, let’s take a look at one more icon.

Move the mouse pointer over the icon that is depicted in Figure 3-15.
This is the VERIFY THE CONTENTS OF THE TARGET DEVICE icon. When
you program a device, MPLAB IDE automatically will compare the contents
of the device memory with the assembled programmed code to verify that the
programming operation was successful. You can manually compare

—

R 1) e

and verify the device memory to the loaded programmed code by
Lot the use of the VERIFY icon.

{Verlfy the contents of the t=rgat de--ﬂ

Figure 3,15 — VERIFY THE CONTENTS OF

THE TARGET DEVICE lcon.

Build and Load Program

Go ahead now and build the program and load it into the MCU. This
completes the overview of the MPLAB IDE software and the common

operating icons. You also have loaded the first example program code, the First Program
project, compiled the program, and loaded the program into the PIC16F676. Before vou can
use the device in circuit. you will have to build the circuit. The following presentation will
nstruct you how to populate the prototyping board with the common circuits used throughout
the text exercises to power the board and installed devices, as well as building the circuit
required for the First Program.

Board Setup Outline

Hardware setup. The following board setup outline assumes that you will be using
the kit of parts that accompanies the ARRL’s PIC® Programmming for Beginners book.
There is nothing special about the components nor is there anything critical about

Software and Hardware Setup 3-5

oy 7805 the board layout. This should be
considered only a guide and is
1 + . 1 REG 3 1 14
| ! O - otor 2 e i3 3 offered to provide some continuity
|2 e “3 B = BAD 1_2 between the illustrations that you
77 —{RA4 3! RAT|— will see in the book and the board
“1Rra3 T R (17 layout that you will build as you
Slres & reo® proceed through the construction
Slecs ro1l2- exercises in the book. As you go
i - Roo |2 through the following steps to set up
ARRLOSO1 your prototyping board, you should

Figure 3.16 — Basic Board Setup.

refer to the schematic as well as the
pictorial illustrations.
The basic board setup includes

installing power bus jumpers, a voltage
regulator and flter capacitor, a power
switch, 9-volt battery holder, and
power connections for the MCU.

The schematic for the basic setup

is illustrated in Figure 3.16. Com-

Figure 3.17 — Two Power Bus Jumpers Installed on the Bottom of

ponents will be added to this basic
circuit throughout the exercises in the
book. -

Install two power bus jumpers on the bottom of the board as illustrated in

the Board.
Output input
ﬁ
Boftom
ARRL0502 Ground View

Figure 3-17. You may elect to shorten and trim the jumpers to make a clean,
tight fit. Color coding is not critical but it will be helpful when tracking the
wiring later. The vertical red bus column will be +3-valts, the vertical blue bus
column will be ground. -

Review the pin-out diagram for the 7805 voltage regulator in Fig-

Figure 3.18 — Pin-out Diagram
for the 7805 Voltage Regulator.

A B
i

-3 =

|
|
b

|

Figure 3.19 — Regulator
Installed in the Board
with the Input Pin in an
Adjacent Hole as Shown.

o>
B m
B i)
g 05

" ow 5@ m 8 =
o=

Figure 3.20 — .01 uF
(104) Capacitor installed
Adjacent to the Regulator.

3-6 Chapter3

ure 3-18. The orientation of the drawing is from the bottom side (lead side) of
the compoenent. Bend the input lead of the regulator at a sharp angle close to
the bottom of the case, then form a 90 degree bend in the input lead to match
the holes where the regulator will be installed in the board (see Fig-

ure 3-19). Trim the output and the ground pins of the regulator to approximately

2 inch from the component body. Install the regulator with the output pin in the
+5-¥ bus, the ground pin in the ground bus, and the input pin in an adjacent hole as
shown in Figure 3-19.

Trim the leads of the .Q1uF (104) capacitor 0 approximately % inch. Insert the
capacitor across the +3-V and ground bus pins adjacent to the regulator as shown in
Figure 3-20.

Install the SPDT slide switch so that the center pin is in the same horizontal
row of pins where the regulator input pin is connected. Install a jumper from the
top pin of the slide switch to a hole on the other side of the board as illustrated in
Figure 3-21. When the slide of the switch is positioned up, the power will be tarned on.

Install the battery helder. Notice that the pins of the holder are labeled + {plus)
and — (minus). When you install the battery holder, ensure that the — pin is inserted
in the ground bus hole and the + pin is inserted into a hole that is adjacent to the
connecting wire going to the power switch. If you inadvertently install the holder with
the — pin in the +5-volt bus line, you will create a short circuit and could damage the
voltage regulator (Figure 3-22).

This is a good time to check your wiring by installing a battery in the holder,
connecting a volt meter to any conveniently exposed jumper wire connected to the
+3-V and ground buses, turn on the power switch, and check for 5-V.

The final step 1s to install a jumper between the
5-V bus and pin 1 of the IC socket and a jumper
g S wire between the ground bus and pin 14 of the IC
2 as illustrated in Figure 3-23. In this illustration
you will see the use of the optional ZIF socket.
Pasiticn the location of the MCU so that you can
easily remove and install the IC on the board during
sect |l T program development but also consider giving
= yourself plenty of board room for developing other

Figure 3.21 — SPDT Slide Switch Installed so that Center

Pin is in Same Row as Regulator Input Pin. circuits.
A B
l ’g i : depicted in Figure 3-24 and includes an LED with
gl 8 ' current limiting resistor connected to pin 5 of the
Figure 3.22 — Instalied Battery Holder. PIC16FG76 and the three conductor cable that
connects the LCD unit to 5-V, ground, and pin 2 of
the MCU.

The First Program code inttializes the LCD display and then displays a
welcome message. The LED will flash at 1 second intervals while the device is
powered. Install the programmed PIC16F676 in the circuit and apply power. If all
goes well, you will have experienced your first MCU programming success. If not,
first confirm your circuit wiring and then reprogram the MCU.

After you are satisfied that your MPLAR [DE software 1s installed correctly,
that the PICKir 2 programmer is integrated to your computer USE port, and your
prototype board wiring 15 correct, you can disconnect everything and remove
the LCD related cable connections and the LED related components from the
prototyping board. Leave the basic board circuit in place for later exercises.

First Program Components

This completes the construction of the basic
board. Continue to populate the board with the
components required for the First Program.
The schematic for the First Program circuit is

Summary

The MPLARB IDE is the umbrella program that allows you to develop and
test your program code and to load the compiled code into the MCU memory.
The PICKit 2 Development Programmer is the hardware that you will use in

1 i 14
vdd Vss ‘7
2 RAS RAD 1—3
Y
i RA4 ('_") RA1 -1—2
=1 RA3 % RAZ 11
5 2 10
7 RCS & RCO |—
RX @ 6 9
Barallax Serial LCD [et = — —RC4 rRei -
27977 Gnd /4 7 8
3 o —RC3 RC2 |—
B 4700
- ARRLOE03
Figure 3.23 — Jumper Installed

Between 5-¥ Bus and Pin 1 of
the IC Socket. Figure 3.24 — First Program Circuit Schematic.

Software and Hardware Setup 3-7

conjunction with MPLAB IDFE to load the programs into the microcontrollers. During this
chapter you have installed the software, populated the prototyping board with the basic
pawer circuitry, and loaded your first program application to test the system.

Review Ouestions

3.1 What icon and MPLAB IDE operation must you use with caution, or not at
all as recommended by the author?

3.2 If an MCU device suddenly stops working when developing your code and
reloading the adjusted code in the device, what can you check in the device

memory ¢ Iy to froubleshoot the problem?

3.3 What is the Web URL that you can visit to find the latest version and/or
check for recent updates of MPLAB IDE?

3-8 Chapter 3

Program
Architechture

Objective: To model the basic program architecture that is used in the program exampies and exercises
of this text. The program architecture serves as an outline to organize the various components of a
typical MCU program.

Reading: PICIG6F630/676 Data Sheet, pages 56-58.

Basic Program Architecture or Qutline

Keeping your programs organized will help you to keep track of what you are trying
to accomplish with your program, help other users of your program to follow your logic
when developing the program, and finally help you follow your own logic when you revisit
the program to make adjustments and improvements at some later date. The basic program
architecture or outline presented in this chapter is the architecture used for writing the programs
in this text. This architecture should be considered just one example of how a program can
be organized. After you become more proficient in MCU programming, you may develop an
alternative architecture that makes more sense to you, or you may elect to copy the architecture
of other programmers. In any case, try to use the architecture illustrated here while you are
learning MCU programming.

Outline Architecture

4-2

Chapter 4

There are a few programming lines included in this outline architecture and a few
programming techniques presented. Do not get concemed if it all appears confusing because
these techniques and programming instructions will be covered in detail in later chapters and
are used here only to illustrate the kind of information that is included within each section of the
program architecture.

For instance, in the architecture outline, you will see lines beginning with the semi-colon
(;). The lines that begin with the ; are comment lires that are disregarded by the complier when
it is translating your assembly code into machine language that is sent 1o the MCU’s memory.
The comment lings are ways 10 document what is going on in the code and are a way for you to
communicate fo yourself and other users of your program. In the programming examples of this
text, I have tried to “over” comment, to state with comments even the most obvious about the
code segment. [do this for instructional purposes. Conmumenting is an art and it will take time for
you to develop your own style of commenting. But I urge you to comment your code right from
the very beginning of your programming career so that you develop a habit pattern that will save
you time and frustration ip the future (guaranteed'). This was a hard lesson I learmed.

The program outline used in this text includes:

1. Program summary description: information about the auther, and other summary
information that would be important to the application and use of the program.

2. Directives: tell the compiler the MCU device that is being used and any additional
program files that will be used by the program. This section also includes directives that the
assembler uses to configure the basic control functions of the MCU.

3. Defines: are simply constant and memory location labels that help make the code more
readable and casier te adjust.

4. Variable labels: are mnemonic symbols that represent the memory locations that are
reserved for the storage of variables in the General Purpose Registers section of RAM used
during the program execution. Variable labels are assigned and associated to specific memory
locations in this section.

5. Reset Vector: is the starting point of the program. On initial power-up or when the device
is resel, the program is initiated at memory location 0x(¥). This section includes a simple call
instrirction to branch or jump to the memory location where the real program begins.

6. Interrupt Vector: like the reset vector, this is where the program will jump to
upon an interrept from one of the device resources (more on interrupts later). This section
includes a call instruction to the Jocation where your program will service the interrupt

or can contain the interrupt the service routine itself.

7. Initialization: is the program segment where you will set up the device resources.

8. Main: is where the main part of your program is located. Generally the initialization
segment will only be run one time when the device is first powered up, however, the main part of
the program may be looped through many, many times during the program execution.

9. Sub-routines: including the interrupt service routine and other sub-routines, are located at
the end of the code. These routines are small program segments that are used multiple times during
the main program execution and are called when needed from the main program. The use of sub-
routines reduces the memory occupied by the program and simplifies the overall program.

This is what the program architecture will look like in the assembler window (the . asm) of
MPLAB IDFE. More defailed descriptions of the content of each segment are included bere, using
the semi-colon (;) to indicate comment lines just as would be used in an actual program. To help
indicate the breaks between sections of the program, lines of asterisks (*) help to visually draw
the distinction between sections. Once you have studied this outline, you will be familiar with
the architecture and contents of each segment of the program wher it comes time to study the
programming examples in later chapters.

ekl
:

et e ste e sfesfe sk ste sk o9t oK s s sk s b st n sl o ol ol s s shesje oot e e b st e mie ok o o ol e ot fesbefe o she ol e s stk g e sk ok sl slesfe ool e sfesfe ettt sl ke ke
;This section of the program file is where you will provide the program summary. Information located here

amight include the purpose of the program, any special considerations about compiling and using the

;program, the author’s name and contact information, the program revision number and date, and other

srelevant information.

-k

e kAuioineck koo ok dng

5 ot s st sfe st sfe o e o o s s et o e s s s e st ek geslesfesiesfeslef ekl itk ok ok ok

s gk el ook ok ooloinkok keloksk

;This is where you would provide assembler directives 1o indicate the type of processor that this program is
‘designed for and other files that contain information relevant to the processor and the program. In this
;example (and what you will be using in each exercise program for this text) the first line defines the

:MCU device as the PIC16F676 and identifies the file pl6f676.inc as being associated with the program.
;The . inc file ts an fnclude file that contains labels associated with tegister memory locations, constants
;associated with specific bits within the registers, and other pertinent information about a specific MCU.
;There is an . inc file for each MCU, unique to the MCU, The Include files allow you to author your code
;using labels that mirror the documentation for the MCU, making your code more readable and adaptable
;for other users.

fsjede ok e st e s sk ook ek ok ok ol ke

stk R o o e R R R Rk ko

S denenk ek ook ok ok R R o Rk

list p=16F&76 ;list directive to define processor
#include <pléfé76.inc> ;processor specific variable definitions

ek st sk st sl sk R ek e okefesk stk s ch ekl sk st e e e etk e ok ke sie sk ek ook

e L EE RS LT

;This section of the code is where you would provide directives to configure the basic control functions of
;the device. The association of the labels to the specific bit configuration is included in the MCU . inc file
:and they are designed to be descriptive of the specific function. For instance in the example below, the

DT _OFF bit would disable the watch dog timer. To do this, the WDTE, watch dog timer enable bit

:(BIT 3) within the CONFIG register, would be CLEARED. If you were to [ook through the p[6f676. inc
sfile using WINDOWS NOTEPAD, you would find that WDT_OFF equates to 0x00. Each bit label is
;separated by the * &' symbol. The accumulation of bits is then stored in the CONFIG register which is
;located beyond the user program memory space within the device.

seksksk

2ok o o ok sl ke sk ok ok R

s o of gk ge sl ook e e steofe e ofe e e el e i

__CONFIG CP OFF & _WDT OFF & BODEN & PWRTE_ON & _INTRC OSC NOCLKOUT & _MCLRE OFF & _CPD_OFF
; '___CONFIG’ directive is used to embed configuration word within .asm file.

; The labels following the directive are located in the respective .inc file.

; See data sheet for additional information on configuration word settings.

oot s ok o o e oot o ekt e e o o ok et e s e ol ettt ot o o ek st s sk e sl teloRoRok skl g ok o

(R T
¥

Program Architecture 4-3

:Defines are labels that are used throughout the program to identify specific memory locations

;or to identify constant values. These defines are useful when making program changes particularly
;if a memory location or constant value is used frequently in the program. Instead of having to

;o through all the code looking for each and every place the memory location or constant is

;used and making the change in the code, the user can simply change the value of the define located
;in this block of the code and lhey have changed aLl the values throuﬂhout the progt‘am

#define Bank0 0x00
#define Bankl 0x80

e 3% ok sk ek sk sk R R R SRR S

ke she e sl e ok sl sde sl e sl ok ok skl sieoieteiatokok ok

,ThlS is where you will reserve (declare) memory locations for sforage of variables used in the program and
;associate them with a descriptive fabel. In the PEC16F676, the location of the 64 bytes of the General

;Purpose Registers (GPR) 1s between 0x20 and 80x5£ 1n Bank 0. In the example below, the variable space

;1s reserved beginning at the first memory location 0x20 and assigned the label test byte. Using the cblock
;directive as illustrated here will result in the declarations being established in this block of GPR. In other
:MCUs, there are additional segments of GPRs, for instance in Bank 1, 2 or 3, if there is more memory

;on board the device. In the case of the PIC16F676, there is only GPR space n Bank 0.

» e S0l oft o o of ofe e e ol ofe oo o e st o ool ofe st sl

e diesie ofe e o ofe oo e ohesde e sl sl sk iR

L

cblock 0x20

test byte ;used has workspace for pin change interrupt
minute_up ;jused in minute segment routiness

transmit_on ;jused as transmit on flag

count_down ;used to track minute segment (1 through 5)
message_counter ;used in message loops

endc

AR R R TR E P P T T EE P EE P P S
:

iR RSk R OR Rk

EE 3

{The Reser Vector is at the very beginning of the program and includes essentially a jump- to statement that
;tells the PC (the program counter) where the actual program begins. On initial power-up or reset of the
:MCU, the program counter is cleared {set to zero) and the program begins at the beginning, memory
;ocatton 0x00. Therefore, the first Line of code in your program needs to be a jump-to, or go-to instraction
‘(goto) to where the actual beginning of the program is located. This is required because another vector,
sthe interrupt vector, is located at memory Jocation 0x04, just 4 bytes of memory away. The interrupt
;vector ts where a jump-to will result in the event of a purposeful interrupt of your program in response to
;some defined input. Because there are oaly 4 bytes of memory berween the reset vector and the interrupt
;vector (hardly any room for an actual program), the furst line of the program needs to be a goto instruction
;to Jump to where there is sufficient room to hold the main program. Likewise, for readability and
:efficiency, you will see a goto-like jump-to instruction (call) in the next section of code. In this code
;example, the program calls, or goes to a segment of code called Init. The ORG 0x000 stores this goto
;statement in memory location zero (0x00).

- sl s o e s o ot o o o o s e
;

52 2 e 33 s s ke e s e e e e e ol 3o s ok s e e sl e she ke e sfe e e e sk oo sk e sk sl sge sfe sje e siesk o ook sl sk sie e s s sk sk ekl i Rk e ko

ORG 0xQ00 iprocessor reseb vector
nop ;required by in circuit debugger
goto Init ;go to beginning of program

- stesfe fe o ofe sl ok sesfesfe fe sfeofe s e sl e ofe afeste ofe ke o e e oo sfeofe s afe o e ol ofe e obe ool o e ofe ot sbeoft s sl ok o e s sle b e sfe ok e st ol el sfeate e o ofe e kool et sfeoke sk sl e siesic sieste sk o el kol desdesfe st ste ks s sfesiolek ok
Ll

4-4 Chapter 4

;The Interrupt Vector is where you tell the prograr the locanon of the section of code that js used to
;service an interrupt. You can configure a number of the resources on the PICI6FG76 to trigger a program
;interrupt undes specified conditions. For instance, you might configure the comparator to trigger an
:interrupt of the main program when one input voltage is greater than a second input voltage. When this
;condition is reached, the program counter goes to memory location 0x04 and the program resumes from
;there. The call instruction located at memory tecation 0x04 will cause the program to jump-to a
;subroutine program to service the interrupt and then when that section of the code is completed, the main
;program will resume at the point where it was interrupted. The ORG 0x004 stores this call instruction in
;memory location 0x04. Alternatively, you can enter your interrupt service code beginning at 0x04 instead
;of using the call opcode. This however puts your main code further down the editor page and may

;make your code more dlfﬁcult © mtelpret

EE T L Do 6% stesfe sl sk sk e sk R SORR ke
ORG 0x004
call interrupt_service
return jinterrupt trap - returns without re-enabling interrupts
s e ot s ettt ok e s e e stk o o e s el R SR sk R R R R R R R R R R R 3

,Up to this point in the program architecture, the sections illustrated are pretty much universally accepted.
:The Inirialization segment is a technique used in this text. In this section of the code, instructions are

;used to configure the registers and/or bits within specific memory locations, that control the resources of
;the device. Generally, you will configure the resources of the device one time in total, and then depending
;on the circumstances, make changes to the configuration as needed in the main body of the code. The
JInitialization section of the code is run only once during the program execution, which differentiates this
;segment of the code from the Main body of the code to be discussed later. The word *Init”, located against
;the left margin of the editor screen and at the beginning of a code segment, is a label that identifies the
;segment of the code. The label is used by other instructions within the program to ideatify this segment of
;code. For instance, in the Resef Vector section above, the instruction gote Init uses the label Init to
;identify the beginning of the code segment where you want the program counter to go to upon device -
power-up or resef to initialize the device resources. This code segment is a partial example of the code
required to conhoure the MCU and initialization wﬁ] be covered extenswely later in the text.

Init
RANKSEL Rankl ;switching to Bank 1
call 0x3TF ;retrieve factory calibration value
movwt O8CCAL
BANKSEL Bank(jswitching to BankO
clef PORTA ;clear port bus
clrf PORTC
movlw b’00000I1L ;comparator disconnected, low power state
movwi CMCON
movlw b 11000030 ;glokals enabled, peripherals enakled, TMRO disabled
movwiE INTCON
movlw 710010003 ;right justified, Vdd ref RCO has ADC, ADC Stop, ADC
;turned on
movwE ADCONO
movlw H*00110001" ; TMR1 prescale 1:8, internal clock, TMRL ON novwE
T1CON
BANKSEL Bankl ;switching to BANKL
movilw br0C000001” ;TMRO set-up: pull-ups enabled, X, internal clk, X,

;pre-scale tmr0, pre-scale 1:2

e o e etk dkeioRR R R

o R

Program Architecture 4-5

{The rubber meets the road in this section of the program. the Main Prograin. This is the segment of the
:code that is executed after the MCU resources have been initialized. and this section of the code could be
;repeated over and over again. as in an 1nfinite loop, or could be an umnbretla segment of code that calls
;other segments of code called subroutines, much like a dispatcher will call on specialists to accormplish
;tasks that make up the steps of an overall project. The fabel for this segment of code is generally main,

;but that depends on the program author. The following is an example of a portion of a main program.
: 23 e ofe sje s ofeofe sl ofe st e dlecfe s s e e e el sfe slea st e e sl e sdesie ek e el e ook sk ek sk o

R AR R o R ok o R s ot kot Aol b sk e gk e ok
:

main
goto turned on
goto main
turned on
bsf transmit_on, 0 ;set transmit con flag
movlv time_tweek ;adjust this value to tweek the 1 minute timer
movwi tmrl count
clrf minute up jclear minute up flag
bsf T1CON, TMR1ON ;turn on tmrl
;the code continuves beyond here
CER R R Rk ARk gk

;Subroutines are smaller segments of code (but in reality a subroutine could be much, much larger and
;more complex than the main part of the program) that accomplish specific tasks related to the overall
;project or goal of the program. We have previously discussed the interrupt service routine which is a
:unique subroutine that determines the source of the interrupt and reacts accordingly. Other subroutines
:might be timing delays of specified lengths, math routines to do specific number manipulations, or routines
;to manipulate and control visual effects like seven-segment LEDs to display numbers or LCD displays to
«display text. The judicious use of subroutines can make your code use memory more efficiently, sun more
sefficiently (in less fime) or could serve as a library resource that is used in other program applications
:without major re-writing of code (as 15 the case with the delay subroutines used in the examples in this
itext, you will see the same delay subroutines in many of the programs in this book). Subroutines are
;defined by a unique fabel thar is used to call the routine, and the instruction refurn that causes a jump back
;to the location in the calling program where the subroutine was invoked. The following code includes
;some examples of subroutines,

4-6 Chapter 4

segrdeokok

;Interrupt Service Routine
interrupt service

bet INTCON, GIE ;jdisable global interrupts
btfsc INTCON, GPIF ;check if interrupt came from port change, skip if no
goto port change interrupt
btfsc PIR1, TMRI1IF ;check 1f interrupt came from tmrl, skip if no
call tmrl_interrupt
btfsc INTCON, TOIF ;check if interrupt came from tmr0, skip if no
call tmrQ_interrupt
bsf INTCON, GIE ;jenable global interrupts
return ;return from interrupt service routine
;Delay Routines
gelay200ms ;this will produce a delay of 200mS
mov Lwr L2090
movwf tempa
dly200ms
call delaylms
decfsz tempa,F
goto dly200ms
movilw .64
movwf count
tweek200ms
decfsz coung,F
goto tweek200ms
retlw 0
return ;return from delay200ms subroutine

st g of o o o

stesh o she sk sk sheseoRek Ao ek sk odelodoiok iofoink

e ofe e e e fe e steade e b e ofe e ke sdesleoleeafslee sl ool oo ek steade s e sk e e skt il

ETTET

»

;Finally, the following segment identifies the end of the program. You can use the memory locations after
;the END statement to store tables of data or text that is used by program segments as needed. '

You should get in the habit of using a program organization that is similar to the example
given in this chapter. Keeping your programs organized will go a long way in making your
programs asier to develop and refine as well as making them more user friendly. Go over the
main sections of the program again so that you reinforce the orgamizauon in your mind and also
to prepare to answer the review quesuons that follow.

Program Architecture 4-7

Review Questions

4.1 Tn which section of the program will you identify the type of device for which the program is
intended?

4.2 In which section of the code will you identify additional files that contain information that is
needed to complete the program?

4.3 Why do you not write the main body of the program in the reset section of the program since
that is where the program counter will be starting from upon initial power-up or reset of the

device?

4.4 What is the main difference between the code segrnent in the initialize section and the main
section of the code?

4.5 List two purposes for writing code n subroutines as opposed to writing the same code in the
maip program?

4-8 Chapter 4

Program
Development —
Starting Wizard
and Usinga
Program Template

Objective: To illustrate how to use the MPLAB IDE New Project Wizard to begin program development. In this
chapter you will be taken step-by-step through the process of writing an MCU program using a template. The
template is a shell of a program that you can use as a starting point for future programs by making adjustments
and additions to the teroplate. Once you have the template set up for use, you will build the program into a
machine language program, send it to the MCU, and then use the programmed MCU to toggle two LEDs
connected to the MCU, your first real programming experience.

Reading: PIC{6F630/676 Data Sheet, page 55

Program: Program Files/Ch 5 Program/TEMPLATE FOR 16F676

The MPLAB IDE New Project Wizard — Introduction

The MPLAB IDE program has a very useful function that will take you through the steps
required to begin developing a program. You will be taken through the process with step-by-
step instructions illustrated by computer screen shots of each step. Your computer screens may
vary slightly from the illustration because each computer directory is unique and you may have
your computer’s operating system set up differently from my computer preferences, so do not be
distracted by these differences.

The following steps assume that you have installed the MPLAS [DE program using
the default installation. It is highly recommended that in the beginning you set up some file
directories as suggested below so that the step-by-step instructions and illustrations match your
live experience as much as possible. As you gain experience with the functions of MPLAR [DE
and where required files are created during the program development process, you may elect to
use a different file organization plan.

Using the MPLAB IDE New Project Wizard

Sl 1 pi P sramming

Chi

Figure 5-1 — New

Directory Setup

5.2

Chapter 5

Step 1. Using your WINDOWS Explorer application, create a directory on your C-drive
named PIC Programming and create a sub directory within that directory named ChS
{Figure 5-1}. Make a mental note of these directories because these will be the working
directories where the files associated with your program will be located.

Step 2. Launch MPLAB IDE and you will see the application’s window as illustrated in
Figure 5-2. Note at the top menu bar of your computer screen a green file folder with a yellow
sun-burst in the corner. If you move your mouse pointer over this icon and hesitate you will see
the name of this icon popup as NEW PROJECT. This is the new project wizard function that will
walk you through the process of creating a new program.

Step 3. Click on the NEW PROJECT icon and a file management diatog box will popup
and ask for a file name for the project that is going to be developed and the location within
your computer’s file directory where the working files will be stored (Figure 5-3). A project is
a collection of files associated with a program that you are going to develop. As a technique,
try (o use descriptive project and file names to make it easier to locate these files in the future.
Enter a project name “Program Template” and browse your directory until you locate the PIC
Programming/Ch 5 file folder you created in Step 1.

Step 4. The next few steps do not have to be done n a specific order, but for now, follow the
order presented here. In this step you will be telling MPLAB IDE the type of MCU programmer
that you will be using to witimately program the device. You are using the PICKit 2 programimer.
On the menu bar: click on PROGRAMMER /SELECT-PROGRAMMER/PICKIT 2 (Figure 5-4).
Do not be concemed if you get an error message dialog box upon selecting PICKIT 2. Once
you make this selection, MPLAB IDE will oy to connect to the selected programmer, and if you
do not have the programmer connected to the USB port of your computer, the error message
will result (Figure 5-5). You can develop and test programs without the programmer attached

to the computer. Connecting
to the programmer will be
demonstrated later.

Step 5. Click on the menu
bar: CONFIGURE/SELECT
DEVICE (Figure 5-6) and a
listing of all the MCU devices
supported by MPLAB IDE and
the PICKir 2 programmer will
be listed in the pull-down box.
Scroll down the list until you
find PIC16F676 and highlight
that device (Figure 5-7). Click
on OK.

Step 6. Return to the menu
bar and click: CONFIGURE/
CONFIGURATION BITS
(Figure 5-8). The selection
= | PR e [o B e Fem 1 a § : e L that allows you to

LS !lactl B[[t .
Fi 5-2 — Icon for the NEW PRO.ECT wizard function that walks you through configure selected set-up bits
igure 5-2 — .
gure y 9% for the MCU is displayed

the process of creating a new program.
(Figure 5-9). Just make sure

that the check box labeled
“CONFIGURATION BITS SET IN CODE” is checked. Remember in the Iast chapter one of the
sections of the program architecture was the configuration section? This is the section where the
_CONFIG directive and the associated specific bit selection labels were used to SET or CLEAR
the individual configuration bits. By checking the box on this screen, you are telling MPLAB
[DE 10 use the configuration as detailed in this section of the program code mstead of using the
manual bit configuration sclection shown on the screen. If in the future you want to manually
select the configuration bits,
— : = ’ = simpiy make sure the check box
[€5 o froo: b S e e e ; T S is cleared and use the individual
(] |3 H LT B E R 7
' - drop down options for each
configuration bit to select the
appropriate bit status for the
device.

Step 7. In the next two
steps you will be adding a
couple of files that will be used
by the MPLAB IDE to generate
the program. The first file to
be added is the Include file that
contains the standardized labels
assoclated with the specific
device being programmed that
will help make your code more
readable to yourself and others.
(This file was mentioned in the
previous chapter.} Each MCU

PICEFEY I [T T T W il

] b |—nruhnllqlw o e it e device has a specific Include

Figure 5-3 — NEW PROJECT File Management Dialog Box file that is installed on your
Program Development — Starting Wizard and Using a Program Template 5-3

computer when you install
MPLAB IDE; in the case of the
PICI6FG76, this file is named
p16f676.inc. To add this file
click on PROJECT/ADD FILES
TO PROJECT on the menu bar
(Figure 5-10). The file sefection
dialog box will pop up (Figure
5-11). Click on the “HEADER
FILES.inc” line in the Jump To
selection box. Now navigate to
where the canned . inc files are
located in your file directory. Tf
you did the default installation
of MPLARB IDE these files will
be located in: C:\Program
Fiies\Microchip\MPASM Suite.
Once in this directory, scroll

i e e e e P S through the list of . inc files
e | e ntions Bvmeee - Hores J Tt until you find PI6F676 and

Figure 5-4 — Click on PROGRAMMER/SEL.ECT-PROGRAMMER/PICKIT 2. select this file.

Step 8. You will next

add the template file that 1s
included on the CD ROM that accompanies this text. This template file is where the actual code
of your program will be written. Tnsert the CD into the drive. Navigate through the directory of
this CD to the file folder labeled Program Files/Ch 5 Program. Within that folder you will
find a file named TEMPLATE FOR THE P16F676.ASM File. Copy this file and place the copy
of the file into the project working directory on your C drive that you created in Step 1 (C:\
PIC Programming\Ch 5). If
you would like, now is the
time to rename this file to a
more descriptive name. You
may want to do this in future
programs that you develop
using this template. In this
exercise the file name Template
[6F676 1s appropriate. Once
the template file is installed in
the project working directory,
add this file to the project
by elicking on PROJECT/
ADD FILES TO PROJECT
on the menu bar (Figure
5-12). Navigate to the PIC
Programming/Ch 5 directory
and select the TEMPLATE FOR
THE P16F676.ASM file.

Step 9. Click on VIEW/

[T - - - Fa | Bewd |

| e ot |HT_..* i | ! s PROJECT on the menu bar

Figure 5-5 —This error message will appear when you do not have the (Figure 5-13). This will la[low
programmer connecied. Do not be concerned. you to see the files associated

5-4 Chapter5

with the project. You will see
the directory for the project
listed with the . aswm file in the
2 E Source Files folder and the
Fioa Tosmn 301 Aine filein the Header Files

w1 [T i ey = Thed Urparro s Forppiietd] poomerily)

folder. If you double click on
the TEMPLATE FOR THE
P16F676.ASM file, the program
working window will open

and you can view and make
changes to the program file
(Figure 5-14). This is the point
we want to get to so that we can
start writing our programs. This
would also be a good time to
double click on the P16F676.
INC FILE and view the contents
of that file.

S """"’ﬂ_;._..'_" I PSS I s T S Step 10. There are just a
(istart] b omchiued [Progam Tomplate 1 ¢ fael | - W Az
few more steps to complete the

Figure 5-6 — Click on CONFIGURE/SELECT DEVICE. process. The next steps will set

up and configure the simulator
that will allow you to run the
program on your computer and debug the program before it is installed on the MCU via the
programmer. The simulator is a very powerful and useful utility. Click on DEBUGGER/SELECT
TOOL/MPLAB SIM on the menu bar (Figure 5-15). This selects the MPLB IDE SIM Simulator.
Go back to DEBUGGER/SETTINGS (Figure 5-16) and a dialog box will pop up that allows
you to set the device clock frequency that will be simulated (Figure 5-17). In the exercises
in this text, you will be using
the internal oscillator of the
PIC16F676 which operates at 4
MHz, so select this frequency.
Remember the configuration
vt el e e =] bits in Step 6 and Figure 15-97
' : I | The first configuration bit was
S _ to select the oscillator type. This

|t — s -

R e L s is where you would make the
i) FRGIE:) Pt 1

WL REL 1= _ selection for the other oscillator
|| options available in the device
| o @ ourLER @ o
(as detailed in Chapter 9 of the
PICI6F630/676 Data Sheet.)
Step 11. In the MPLAB IDE
menu bar find and click on the
BUILD icen (circled in Figure
5-18). This application will
turn your assembly code into
machine language and save the
program as machine language in

F'l:u' e T T e e —

Bsm] | | e st |m Wsha i Lt P T ey a .hex file. The build process

Figure 5-7 — Listing of All the MCU Devices Supported by MPLAB IDE and is automatic and it can happen
the PICKif 2 Programmer. Highlight. pretty fast. if you end up with

Program Development — Starting Wizard and Using a Program Template 5-5

a dialog box with FAILURE and a red bar in it, there were some problems. If you followed the
mstructions so far, the Template program should build with no errors, and a dialog box will flash
on the screen as iltustrated in Figure 5-19 momentarily and then disappear. If you select the
Qutput window, you can verify that the build was successful (Figure 5-20). The Output window
will also highlight areas of the code that caused a build te fail and is very helpful in de-bugging
your program. The program is now ready to be sent to the MCU.

Hexadecimal File and Assembly Language File

»siesk st s ek oesk i oosleoke o sk et st s sk e e s ke sl sk sk e sl s e s

H

5-6

clrf
cirf
bst

;main program
main

If you look in the PIC Programming/Chb directory you will see all of the files
associated with the project you just created (Figure 5-21). I would like to bring your attention
to 1wo of those files. The first has the extension .hex, this is a hexadecimal file that contains the
actual program that will be loaded into the MCU in machine Janguage, in hexadecimal form. The
second file has the exiension .asm, this is the assembly language file that contains the program in
assembly language that you will be authoring very shortly. When you share files with other users,
you can send themn the . asm file and they can import that file into their program development
software and then make changes to your program to meet their needs. Or you can send other
users the .hex file so that they can directly send the program to their own devices.

Take a look at the program that is contained in the Template for 16F676.asm file in the
editor window of MPLAB [DFE but don’t get overly concerned if you don’t recognize what is
going on in this program. You will lean & lot more about programming in future chapters of this
text, and I will give a brief description of the program just to put the concluding activity of this
chapter in context,

If vou scroll down to the section of the code that looks like this:

PORTA
PORTC
PORTA, 5 ;jstart with pin 5 high, pin 0 low

o e ool sk st s ol R R RROR A SR AHRR R R e R R R R R R R kR

movlw b‘00100001° ;this is a mask used by the xorwf command to toggle

;pins 5 and 0

xorwf PCRTR, £ ;XOR's the mask in the w-reg with PORTA and setg pins

;5 and 0 accordingly (toggles them-if on then off, if
;off then on

call delay200ms sthis is a call to a delay subrcutine that will delay
;200ms
goto main ;g0 back and do it again

Chapter 5

The first two lines that are at the end of the device initialization section of the code CLEARS
all the I/O pins of both PORTA and PORTC. The third line SETS IO pin 5 of PORTA so that 5-V
is present on that pin.

The main body of the code continues by moving a “Mask” into the w-register (the working
register) with 1’s in bit 5 and bit 0 (which correspond to IO pins 5 and 0 in PORTA). The next
instruction does an exclusive OR comparison between the pin status of PORTA and the w-register.
In an exclusive OR truth table, if both bit inputs are 0’s or 1’s, the outcome 15 0; if the bit inputs
are opposite of each other, the outcome is 1. What this means is that if PORTA /O pin 5 is SET,
then after this instruction it will be CLEARED, and vice versa. The same holds true for PORTA
1/0 pin 0. This will toggle those two pins on and off after each pass throngh this instruction.

"'--rl-'-u-k-‘: FHE‘I-IH |n-||-r:| =
_:Dﬁir ™ d '.aa?.'ﬁ‘ 5l i
L e e =T | i
F Lo 3E
i-‘é-‘fi"_l s -t et .!I.:_Dmrir1m ;-l :--_&-. 2 o « g Ak
Figure 5-8 — When you click on CONFIGURE/CONFIGURATION BITS the
selection screen that allows you to configure selected set-up bits for the MCU

will be displayed.

= =
Fia Edi M o Deuge . Friguees Tess Caviges Tk ok
g ,‘.L'.ﬂ;ﬂ_ﬂL'."_!J.Tiu' g B S fHE | s EL
| F Covmesimbr
Addresa L Walus ':rl-i-'—!—— — I.-ﬁ‘-'—n——l
=m o T
™ |
. |
= R == = EF F =7 EA
o e e ittt | [Progroms Tommste - = W 7 Par] DL T

SET IN CODE” is checked.

Program Development — Starting Wizard and Using a Program Template

Figure 5-@ — Make sure that the check box labeled “CONFIGURATION BITS

5-7

After the state of the PORTA pins are checked and XOR’ed, the program calls a delay
subroutine that is 200 milliseconds long. Finally, after the delay, the program goes back to the
beginning of main to do it all over again. The result is that LEDs that are connected to PORTA
/O pins 5 and 0 will altemnately tarm on and off with a period of 200 milliseconds.

Wire up the circuit illustrated in Figure 5-22. This circuit includes current limiting resistors
and LEDs connected to pin 2 (PORTA, RAS) and pin 13 (PORTA, RAO) and ground.

A Few More Steps to Load the Program in Your Project to the MCU

Summary

Now that you have used the Project Wizard to develop vour first project, let’s go through a
few more steps to load the program in vour project to the MCU. The following steps will take
you through connecting your computer to the PICKir 2 programmer, building your program
{converting it from assembly language into machine language), and sending your program to the
MCU RAM.

Step 12. Connect your P/CKit 2 programmer to the computer USB port and insert
a PIC16F676 device into the programmer socket. In the MPLAB IDE menu bar, select
PROGRAMMER/CONNECT(Figure 5-23). If all goes well and the programmer and device are
recognized, you should see a dialog box confirming the status (Figure 3-24),

Step 13. Click on the PROGRAM TARGET DEVICE icon in the menu bar {circled icon
i Figure 5-25). If the programming was successful, the verification will be spelled out in the
Output window (Figure 5-26).

You have now successfully used the Project Wizard to create a program project, inseried the
required anciltary files into the project (the . inc and .asm files), selected the desired device and
set up the configuration bits for the device, attached and connected your PICKi 2 programmer,
built the program, and finally installed the program on your PIC16F676 device. If you now plug
the PIC into your prototyping board and turn on the power, the LEDs will flash alternately with
an interval of 200 nulliseconds.

During this chapter you learned how to use the MPLAB IDE Project Wizard io create a new
project. Often you will use a program template to get you started and to shorten the program
setup and development time.

Review Questions

5-8

Chapter 5

5.1 List the steps required to list the files that make up a project.
5.2 Can you develop, test and debug programs without attaching the PICKir 2 programmer?

5.3 Will the MPLAB IDE allow you to load a program into the target MCU device if the program
did not assemble properly?

5.4 Which of the icons that allow you to access the target device memory should you use with
great caution, or not at ail?

5.5 Why is 1t important to use the standard default file structure when installing WMPLAB IDE on
your computer?

5.6 Which type of file is unique to each particular MCU device?

e e e e

Figure 5-10 — To add the Inciude file, click on PROJECT/ADD FILES TO
PROJECT.

e P ———

e — WAL W LW = —
[Time wm T W Tabgge mepema Sl Talpes SR, e

| ket i) s ate oo e e py

[R G T e W =T 1] B) s B
PR]

Figure 5-11 — The file selection dialog box will pop up.

Program Development — Starting Wizard and Using a Program Template

5-9

mlﬁ-lh—-uh-:-h.—m 1
Iuw__ll [Prapest Do

Ftmin e
'-':—L-!Fﬂ-!u!—
1L

|~ S e s

[y . ree - e | R] e —— o

e heve ot eiec %Jﬂ“‘*—“ﬂ?—lﬁ“"‘“ Lo
Flgure 5-12 — Add this file to the project by clicking on PROJECT/ADD FILES
TO PROJECT.

Lo _of¥ e |

[DGRBS Gad | s nnhFEEe] mrnhny 1§

'-'i.-rmr—lln—ﬂ-«:uul' T4 Program Template - . | L5 Fard

Figure 5-13 — To see the files associated with the project click on
VIEW/PROJECT.

Chapter 5

El s tee
Dot e

i st |-t pre ok t.-.—-:_.—-._ W 13- b i T

Figure 5-14 — If you double click on the TEMPLATE FOR THE P16F676.ASM file,
the program working window will open and you can view and make changes to
the program file.

e LapeTs
tiswiuds | ELALETE. 1m:

S SN soh 0 ml 0 REC | SR b jaiids B8 WE R :
o stant] | ks Momess Dutoo Iaﬂm_iﬂmi __EWTM i [om0 g

Figure 5-15 — [f you double click on the TEMPLATE FOR THE P16F676.ASM file,
the program working window will open and you can view and make changes to
the program file.

Program Development — Starting Wizard and Using a Program Template

5-11

T - Fcwem. . e A ke | o RRl DGl Be R
ot] | 155 ki st vt | (00 Brpa D | 4 nﬂ:m‘:-_W Y orem | Teliw ietan
Figure 5-16 — After the MPLAB SIM Simulator is selected, go back to
DEBUGGER/SETTINGS, highlighted above. .

=1 Fm o EkE 1 et bekd GREedT 0 W A

e i e i = ik
Stant| | fetn et o | _pn 5 Proper Destspman | M_—_E“‘w"mw"‘ 19 7Pt

Figure 5 -17 — The dialog box pops up that allows you to set the device clock
frequency that will be simulated,

5-12 Chapter 5

PICH! 2 Rendy

[Fount PICKit 2 - Operating System 4
o Target power not detocted - Poweri §
{PICYBFETS found (Rewv 0x3) i
|FiCiat2 Rendy

wa mEr T R ek R s T

[[B s Tempiate™ -
Figuré 5 -18 — Click on the BUILD icon (circled above).

cfiak " Hlor

e LB e am | >ous

16F676.arr".
1 Pl

15Fgan
1 IPAS

Assembly ﬁu:cegsfui.
TEMPLATE FIR 1EFE76.ASM
i 1

Eworsz 0

5 Warninge:
Hepasad;

T aH)
ClLL

o ez v
Suppreszed: 0 2

i Reposted: B
} 0
. Lines Assemblod: 404

PR

Figure 5-19 — The dialog
box will flash momentarily
on the screen as
illustrated.

Program Development — Starting Wizard and Using a Program Template 5-13

asya] 1 EITELFLATE FUR |EFE75.0M 76 P |1
-m ur.-.'-w Pt:g‘nnr:‘\lh\."'lmh 1R cod

wrsr symisol " _DEELR b csiras]
W IR IRT IO

|Fﬂu o Pt "CHPIC ProgeertariediyCh SFrognam Tesplole mop” siccaeded
)

[BUILD SUCCEEDED

FE=iT GECIC P [e T AW kD [m%.c41 3T =

i-h !ﬁrm:-amrmgm: — Mg mﬂ-s.-:.:_] 7!!___:._;'

Figure 5-20 — Select the QUTPUT window to verify that the build was
successful. The QUTPUT window will also highlight areas of the code that -
caused a build to fail and is very helpful in de-bugging your program.

[=eprc Prograssingich 5

A || i Program Template AL rogram Tempiste
|1 DeLorme Docs A4 Waoeng WLal Project Karachin HPUMET)
Fl | Documents and Sefting i L i '“ w:
o B 1 —
&)Dse T vempte for 16687 B Tempiale for 16F575 | T Tengizte for 16F676.C0D

Program Templata.mes
HLE Fi=)

|2 Education Awards I |==| ssfie |j

|3 FEi Rados I=_1 =ni

1 Fire Stuff ¥

I FRRFOY
@ % Garmin 1 |
|1 Gererel Class Instruct |

) Ged-hey Letters

Terplate for LEFETS. e | Tesrglati do 16FETS.st

ERR Fae 15T Fde
it | Al

Figure 5-21 — PIC Programming/Chb directory showing all of the files
associated with the project just created. Notice the file having the extension .hex,
this is a fiexadecimal file that contains the actual program that will be loaded into
the MCU in machine language, in hexadecimal form. Notice also the file which has
the extension .asm. This is the assembly language file that contains the program in
assembly language.

92949101d

ARRLO504

Figure 5-22 —This circuit includes current limiting resistors and LEDs
connected to pin 2 (PORTA, RA5) and pin 13 (PORTA, RA() and ground.

5-14 Chapter 5

el RGAT PR [T T B o ol P

| ([P Fropram Tempbote 13 20 4 Pogam Savnkgrt
Figure 5-23 — in the MPLAB IDE menu bar, select PROGRAMMER/CONNECT.

08 bem Mt Ddbiin Migaer Tk Cedols Gt b - L =
DFEEH Wil [2A T | dotm JoRBS Sa8 cunhdPeEs | DhnGDE F3 g

ql.lh—ﬂ'—lllﬂ-c-:i

skl | ¥ Cirid | i Fime | et me PCLED

feenat 1 B aom E{ P | | s

LPL, fourd Pty A st

2 Fandy =
und kA £ - Dperafing System Varsion 220 1 s

g posen ol detetisd - Pawenng from FICkILZ (5 00V)
PICTEFETE dawred (Rew 0x3)
FICK] 2 Pasncty

—
tim AT ¢ Bary srwszsTe s thfaim grotaeemc
1 Whinlwde FLAITTE gpcs : premenwnt spemilic Ferieein
#ar Lissd
i HBET A o (CT] T [#rw head | HEE
i L‘:m:m—ml; 5P, ™ Frogram Template -... | W e

Figure 5-24 — You should see a dialog box confirming the programmer and
device are recognized.

Program Development — Starting Wizard and Using a Program Template

5-15

Wespon T | Find o i | Wi W | OV |
Miassagu] 7] 111G PROGHAM
Londed CAFIC FrogrammingiCh 5

bug bud o progect ' CAFIC Prog
orevor mntal_DEBUG'
Ay 3 15 V552008

T rﬁ—r AnE bAoAl FE
|gh1mmfﬂ_m-y—m e e | o=

Figure 5-25 — Click on the PROGRAM TARGET DEVICE icon (circied above).

el - E S < S T R
nimmlgmurm-! Y cpas

Figure 5-26 — If the programming was successful, the verification will be
spelled cut in the OUTPUT window as shown.

5-16 Chapter 5

Working with
Registers —

the Most
Important Chapter

Special Function Registers

Core Registers and Peripheral Registers

Objective: To learn the purpose of the Special Function Registers, learn how Lo use memory bank
switching to access Special Function Registers, and learn how to use selected Special Function
Registers to configure the basic resources available in the PIC16F676.

Reading: PICI6F630/676 Data Sheet, pages 1, 2, 5-8, 7-13, 19-21, 27

As previously presented in the Chapter 2 “Inside the PIC165676,” there 1s a segment
of the RAM within the device that is dedicated to device setup. This segment of RAM
consists of a number of byte sized memory locations called regisiers that are used by
the programmer to set up the resources of the device for a particular application. These
registers are called Special Function Registers (SFR). Additionally there is a segment
of this RAM that is used by the programnmer for variables that are manipulated during
the program execution. Why 1s understanding the use of these SFRs most important?

As in any building project, as programming really is, having a firm foundation is critical

to a long lasting, efficient, and useful project. If you truly understand the functions of

the individual SFRs and how to access and manipulate the individual bits within those
registers, you will be well on your way to understanding the PIC16F676 and how to access
its full potental. I strongly urge you io spend some time with the information contained in
this chapter and refer back to it often when initiating and developing your code.

SERs are divided into two sub categories, the Iabels of which, in reality, are just

Table 6-1
Device Setup Memory Map

Bank 0
memory
location
Q0h indirect address
01h TMRQ
02h PCL
03h STATUS
04h FSR
05h PORTA
07h PORTC
DAh PCLATH
0Bh INTCON
0Ch PIR1
QEh TMR1L
OFn TMR1H
10h T1CON
19h CMCON
1Eh ADRESH
1Fh ADCONO

Bank 1
memaory
location
80h indirect address
81h OPTION_REG
82h PCL
83h STATUS
84h FSR
85h TRISA
87h TRISC
8Ah PCLATH
8Bh INTCON
8Ch PIE1
8ER PCON
90h QOSCCAL
91h ANSEL
95h WPUA
96h IQCA
99h VRCON
9Ah EEDAT
9Bh EEADR
9Ch EECONT1
90h EECONZ2
9En ADRESL
9Fh ADCGCNA1

6-2

Chapter 6

semantics and not really important (o the
fundamentals of understanding these registers.
But touching on the semantic differences

here will help 1n understanding the internal
architecture of the PIC16F676. The two sets
of registers are the core registers and the
registers assoctated with the peripheral features
of the device. The core registers deal with

the basic setup, operation, and monitoring of
the PIC16F676. The peripheral registers deal
with the setup, operation, and monitoring of
the ADC, Comparator and Timer [resources
of the device. This chapter will focus on the
core registers. The peripheral registers will be
covered in later chapters that focus on each of
the peripheral resources. For the time being,
just be aware of the distinction between the
two different sub categories of SFRs.

Device Setup Memory

You have seen previously in Figure 2-1
in Chapter 2, and in the memory diagrams of
the readings that the device setup memory is
divided into two banks, bank 0 and bank 1 (a
portion of the memory map is duplicated in
Table 6-1}.

Bank 0 begins at memory address 0x00

STATUS
INTCON
OPTION_REG
PORTA
TRISA
PORTC
TRISC

and ends at address Ox1f (32 bytes) and Bank | begins at memory address 0x80 and

ends at address 0x9F (also 32 bytes). Within each baunk, notice that the individual byte-
sized registers are labeled with what are essentially descriptive mnemonics that help
identify the function of the registers. Using these labels will help to make your code more
readable. In Chapter 5, when you were developing a template for your first program, you
were instructed to wclude an Include file (p16£676 . inc) that is unique to the PIC16F676
device. Each of the different devices that you will encounter has a unique .inc file
associated with it. This include file contains some valuable short cut labels or declarations
that associate SFR labels that are used in the documentation for the device (and this

text) to the numeric value for the specific memory location assigned to the register. For
instance, the following is an extract from the file p16£676 . inc.

EQU H’ 0003
EQU H*000B"
EQU H 0081
EQU H'0005’
EQU H'0085’
EQU H’ Q007!
EQU H 0087

{You can view the entire contents of this file etther from MPLAB IDE or by using
NOTEPAD and opening the file Jocated at C:\Program Files\Microchip\MPASM
Suite if you installed MPLAB IDE using the standard instatlation. It would be helpful
early in your programming experience to print out the contents of the .inc file for
easy reference while developing your code. A contents of the p16£676.inc fileisin
Appendix D.)

These labels instruct the MPLAB IDE complier o assign or equate the mnemeonic
representation of the STATUS register to the memory location 0x03, and so on. If you
notice in the data memory map, the memory location for the STATUS register is in fact
0x03. Using the short hand mnemonic for the registers helps in the “readability” and
understanding of your program code. For instance, if I wanted to SET the bit to switch the
memory bank to Bank 1, I could use the following line of code:

bst 0x03, 0x05

This line of code bit sets the f register (bsf) 5th bit in the register located in memory
location 0x03. The register located in memory location 0xQ3 is the STATUS register and
the Sth bit is the Register Bank Select bit. This line of code is not particularly meaningful
at first glance, however the readability can be improved by using the short hand
mnemonic assignments contained in the .inc file:

bsf STATUS, REFO

Now let’s take a detailed look at the individual registers that are used to set up and
manipulate the PIC16F676 resources. The format that will be used in this discussion of
the individual registers will include the bank where the register is located {0, 1 or both},
the descriptive mnemonic assigned to the register in the .inc file, the descriptive
mnemonic assigned to the individual bits within the register (MSB [Most Significant
Bit] to the left, LSB [Least Significant Bit] to the right} and a short verbal description of
purpose of the individual bits.

Bank 0

IRP

TO PD Z DC C

Reserved

Reserved | Register Bank | Time-outbit | Power-down bil | Zero bit | Digit Carry/Borrow bit | Casry/Borrow bit

Working with Registers — The Most Important Chapter 6-3

STATUS

The STATUS register is used to control the memory bank that is being addressed,
to determine the reset status of the device and the status results of arithmetic operations
during program execution.

Bit 0x05, or the RPO bit 1s used to switch between memory bank0 and bankl.
SETTING the RPO bit switches to bank1.

There are numerous ways that the PICI6F676 can be reset, or restarted, that are
beyond the scope of this text. The bit 0x04 or the TO time-out bit is SET by the internal
workings of the device after initial power is applied te the device, after a CLRWDT (clear
watchdog timer), or sleep instruction is executed. This bit is CLEARED after a waichdog
timer time-out has occurred. The bit 0x03 or PD power-down bit is SET after initial
power 1s applied to the device or by execution of the CLRWDT instruction. The bit is
CLEARED after executing a sleep instruction. You will not be using these bits during the
exercises in this text.

Bits 0x00, 0x01 and 0x02 are used to monitor the outcome of arithmetic operations
performed while your programs are running.

Bit 0x02, the Z or zero bit is SET if the arithmetic or logic operation resulted in
zero. For instance if you are incrementing an 8-bit memory location and the program
increments the memory location that contains 255 (b*111111117), the increment results in
zero (b’00000000") being placed in the memory location. This operation will SET the 2
bit of the STATUS register. The Z bit will be used extensively during the exercises of this
text. '

Bit 0x01, the DC or digit carry/borrow bit will be SET if there is a carty from
the low nibble of a memory location into the high nibble of the memory location. For
instance if a memory location contains 111 (b’011011117) and it is incremented by one
the result in the memory location would be 112 (b’01110000%). Bit-4 of the memory
location is SET due to a carry condition and therefore the DC bit in the STATUS register
will be SET. The DC bit will not be used during the exercises of this text.

Bit 0x00, the C or earry/borrow bit will be SET if there is an operation that results in
a ‘overflow’, or carry out of the MSB, of an 8-bit memory location. For example, back
to a memory location that contains 255 (b’ 111111117). If 1 were added to this memory
location the result would be 256 (b’ 1 00000000".) The result would have overflowed
the MSB of a word sized memory location or variable by ‘carrying’ the overflow to the
upper byte of the word. In this case, the C bit would be SET to indicate that a carry had
occurred (and also the Z bit would be set because the operation also SET the original byte
to zero). The C bit will be used extensively during the exercises of this text.

Bank | OPTION_REG Option Register

RAPU INTEDG TOCS TOSE PSA pPS2 PS5 PSO

PORTA Pull-up Interrupt Edge TMRO Clock TMRO Source Prescaler Prescaler Rate Prescaler Rate Prescaler Ratc

Enable Select bit Source Sclect bil Edge Select bit Asgignment bit Select bit Seleet bit Select bit
OPTION_REG

6-4

Chapter 6

The OPTION_REG register 1s used to control various resource options including
TimerO (TRM{), Watch Dog Timer (WDT), RAZ/INT interrupts and/or if weak pudl-up
resistors are enabled on the PORTA 1/O pins.

SETTING bit 0x07, RAPU, will disable the weak pull-up resistors on PORTA I/O
pins. The weak pull-up resistors provide a +5-volt current source on the I/O pins that
ensure the appropriate pins are in a high state whern not purposely placed in the low
state. The RAPU pin enables or disables all puli-up resistors, the individual resistors are

addressed in the WPUA Pull-up Register that will be covered later. This bit will be used
in exercises in this text.

SETTING bit 0x06, INTEDG, will allow the rising edge of a triggering signal
attached to pin RAZ2 to generate an interrupt. Interrupts will be covered in detail in a
subsequent chapter. CLEARING INTEDG will allow the falling edge of the triggering
signal to generate an interrupt.

Bit 0x05, TOCS, assigns the clocking source for Timer0. SETTING the bit causes the
TMRO to respond to the clocking signal attached to pin RA2 while CLEARING the bit
causes TMRO to use an internal clock source.

If TOCS 1s SET and the TMRO clock source is attached to RAZ, then SETTING bit
0x04, TOSE, will increment TMRO on the rising edge of the clock signal; CLEARING
TOSE will increment TMRO on the falling edge.

Bit 0x03, PSA, assigns the prescaler to either TMRO or the WDT. SETTING PSA
assigns the prescaler to WDT. CLEARING PSA will assign the prescaler to TMRO and
this bit will be used in exercises in this text.

The three bits 0x00 though 0x02, PS2:PS0 (which signifies PS2, PS1 and PS0)
determines the prescaler rate. Refer to the table on page 12 of the PICI6F630/676 Data
Sheet for the full table of bit values to set the prescaler. As an example, if you want to
increment TMRO every 8th clock count, in other words divide the clock counts by a
factor of 8, you would SET PS2:PS0 10 b’010° (PS2=0, PS1=1, PS0=0). This essentially
increases the usable time delay of TMRO eight times.

-

Bank 1 PCON Power Control Register

X X X X X 1 X POR BOD
Unimplemented Unimplemented | Unimplemented | Usimplemented | Unimplemented | Unimplemented | Power-on Reset Brown-out Detect
bit Staws Stalus

PCON

The Power Confrol Register is rarely changed by the casval MCU programmer.

This register essentially contains flags that can be used to test if the device has been reset
(forced to start the program from the beginning) due to power interrupts, or power first
applied to the device (Power-on Reset), or if the reset occurred because of a reduction in
the power source voltage below the “brown-out” level, typically 2.1-volts. In this specific
register, the flags are opposite to the other flag registers, SET being no reset, CLEAR
being a reset occurred.

Bit 0x01, POR, Power-on Reset Status will be CLEARED if a power-on reset of the
device occurred. You SET this bit in software 10 reset the flag so that a subsequent power-
on reset can be indicated.

Bit 0x00, BODIE, Brown-gut Detect Status will be CLEARED if a brown-out
condition reset the device. You SET this bit in software to reset the flag so that a
subsequent brown-out reset can be indicated.

Bank 1

OSCCAL Internal Oscillator Calibration Register

CALS

CALA4

CAL3 CAL2 CALl CALD X X

6-bit Signed
Oscillator
Calibration bit

H-bit Signed
QOscillator
Calibration bit

6-bit Signed Unimplemented | Unimplemenied
Oscillater
Calibration bit

6-bit Signed
Oscillator
Calibration bit

G-bil Signed
Oscillator
Calibration bit

6-bit Signed
Oscillator
Calibratioa bit

Working with Registers —The Most Important Chapter 6-5

OSCCAL

The Internal Oscillator Calibration Register is a specialized register that you use
to store an oscillator calibration value that is determined at the time the PIC16F676
device 1s manufactured. The calibration value is stored in a specific memory location
within the MCUJ’s flash RAM. This calibration value can be useful if you intend to use
the internal oscillator of the device as the clock source and Hming issues are critical.

This calibration value can improve the accuracy of the internal oscillator and therefore
the accuracy of the clock. There are some specific precautions that you need to consider
when using this calibration value. The calibration value is unique to the specific device,
and the calibration value is perishable if you ever totally erase the flash RAM of the
device. You can read the calibration value using MPLAB [DE, record the value for the
device for future reference, and later program this value into the OSCCAL register when
the device is re-programmed. Better yet, do not erase the device RAM! In normal use, the
previous program stored in RAM will be over written by the new program so there should
seldom be a need to erase a device (unless you want 10 protect some code that had been
previously installed on the device). This precaution will be emphasized again in other
areas of the text.

While you are studying the code examples in this book, you will see the specific
program code that is needed to take the factory determined oscillator calibration value
stored in the RAM and transfer this value into the OSCCAL register. This is the segment
of the code that accomplishes that task:

BANKSEL Bankl ;ecommand line to select Bank 1 where the calibration value is
istored (location 3FF)

call O0xX3FF ;retrieves factory calibration wvalue and puts it into the W
jregister (working register)

movwE 0SCCAL ;move the contents of the W register into the OSCCAL register
; {also located in Bank 1)

BANKSEL Bank0 ;command line to go back to Bank 0 where the bulk

;of the program work is performed.

Don’t get concerned about understanding this segment of the program code. That
is the purpose of this beok and the code will be covered in detail Jater. Basically what is
happening with these four lines of code;

1. Switch over the RAM bank 1 so that the calibration value can be accessed;

2. Put this value into a working register where we can do something with the value;

3. Move the value from the working register into the OSCCAL register (you will
soon learn that virtually every movement of values from one register [memory location]
to another register must pass through the w [working] register;)

4. Switch back to bank 0 where most of the program operations will occur. After
each instruction line, the information following the semi-colon (;) represents a comment
statement. These statements are ignored by the MPLAB IDE and are not part of the
program. These comments are for communicating with the programmer and reader of the
code to help explain what is happening within the code.

Bank 1 TRISA PORTA Tri-state Register

X X TRISAS TRISA4 TRISA3 TRISA2 TRISAI TRISAD
Unimplerented | Unimplemented | RAS RA4 RA3 RAZ RAI RAQ

Bank | TRISC PORTC Tri-state Register |
X X TRISCS TRISC4 TRISC3 | TRISC2 TRISCI TRISCO |
Unimplemented | Unimplemented [RCS RC4 RC3 [RC2 RC1 RCO |

6-6

Chapter 6

Tri-state Registers — TRISA and TRISC

Tri-state Registers. The /O pins of the PIC16F676 are arranged in two banks of
6-pins each and are called PORTA and PORTC. Other MCU devices may have additional
or less ports. There is a Tri-state Register for each port labeled TRISA and TRISC for the
PIC16F676. The TRIS# registers control the directionality of the individual pins within
a port. SETTING the appropriate bit in the TRIS# register will cause the corresponding
pin to be an input, CLEARING the bit will cause the corresponding pin to be an output.
When a pin is assigned to be an input pin, the pin is placed in a high impedance state.
This assumes that the pin resources have not been assigned to another peripheral resource
such as a Comparator or ADC resource. There 1s one additional exception on PORTA T/O
pin 3 (RA3). This pin can only be used as an input because it serves a dual purpose as the
master reset pin.

Bank 1 WPUA Weak Pull-up Register
X X WPUAS WPUA4 X | WPUA2 WPUA] WPUAQ
Unimplemented | Unimplemented | RAS RA4 Unimplermented | RA2 RAl RAD

Weak Pull-up Register WPUA

Wealk Pull-up Register. PORTA 1/Q pins have pull-up resistors internally connected
to the I/O pins (with the exception again of /O pin (RA3)). These pull-up resistors
provide an internal current source that will hold the associated pin high when the pin is
in the input state and not deliberately pulled low by an external action (such as closing a
switch). By SETTING the appropriate bit, the weak pull-up resistor on the associated pin
will be enabled. You must also globally enable all the weak pull-up pins by SETTING the
RAPU bit in the OPTION_REG register. In other words, you would allow the appropriate
pull-up to be enabled by SETTING the bit in the WPUA register, then actually enable all
the allowed pull-ups by SETTING the RAPU bit in the OPTION_REG register. PORTA
170 pin 3 does not have a weak pull-up resistor again because of the dual purpose of this
pin. PORTC does pot have any weak pull-up resistors at all.

Bank [ANSEL Analog Seleci Register

ANS7 ANS6 ANSS ANS4 ANS3 ANS2 | ANS] | ANSO

RC3 RCZ RC1 RCO RAS RA3 RA2 [Ra0
ANSEL

The Analog Select Register is the final register that will be covered in this chapter.
This register allows you to assign either analeg or digital resources to the selected I/O pin
depending if there will be analog or digital voltages applied to the pin. For instance, if
there will be strictly +5 or 0 V applied to a pin from a digital source, the ANSEL register
would be setup as digital “channel.” On the other hand, if analog voltages are going to
be compared with the Comparator, or measured with the ADC resources, the ANSEL
register would be set up as an analog “channel.”” Not ali pins of PORTA or PORTC can
have analog resources assigned to them and therefore some 170 pins are strictly digital
and there 1s no capacity to control the analog or digital channel assignment to those pins.
This 1s why only PORTA RAOC, RA!, RA2 and RA4 (again PORTA YO pm 3 (RA3) has
a dual purpose therefore is an out of sequence exception), and PORTC RCO, RC2, RC2,
and RC3 have associated ANSEL bits because cither ADC or Comparator resources
can be assigned to these pins. SETTING the appropriate bit will assign that pin as an
analog input pin, CLEARING the appropriate bit will assign the pin as a digital /O pin.

Working with Registers — The Most Important Chapter 6-7

Summary

6-8

Chapter 6

SETTING the ANSEL bit will also automatically disable the digital circuiery associated
with the pin, disable the weak pull-up resistors on the pin, and disable any interrupt-on-
change assigned to the pin. Care also must be taken to ensure that if a pin is to be used as
an analog input pin, that the bit in the associated TRIS# register is also SET to make the
pin an input pin.

These are some of the most important core registers that will be used in the next
chapter when we discuss setting up resources of the PIC16F676 device in the early part of
the program. There are other registers ihat are specific to particular MCU resources that
will be covered in the detail in the chapters that cover the specific peripheral resources.

Registers are special memory locations that are made up of 8-switches (bits) that
aflow you to set up the resources available within the PICI6F676 to accomplish specific
tasks. The registers are assigned a descriptive label that will be used when we write
programs. The individual bits within each register can be either SET or CLEARED. It is
up to the programmer to SET or CLEAR the register bits to ¢t up the device resources as
needed.

The STATUS register is used to control the memory bank that is being addressed, to
determine the reset status of the device and the results of arithmetic operations performed
during program execution.

The OPTION_REG is used to control various resource options including Timer()
{TRMO), Watch Dog Timer (WDT), RA2/INT interrupts and/or if weak pull-up resistors
are enabled on the PORTA J/O pins.

The OSCCAL register is a specialized register where you load an oscillator
calibration value that is determined at the time the PIC16F676 device 1s manufactured
and stored in a specific memory location within the MCU’s flash RAM to improve the
oscillator and ¢clock accuracy.

The TRISA and TRISC registers control the directionality of the individual pins
within a port and makes the individual 1O pins input (T'ri-state, high impedance) or
output.

The WPUA register determines if pull-up resistors are internally connected to the /O
pins of PORTA. (with the exception again of /O pin 3 (RA3) which can be assigned dual
purposes that conflict with output operations), PORTC has no internal pull-up resistors.

The ANSEL register allows you to assign either analog or digital resources to the
selected 1/0O pin depending if there will be analog or digita) voltages applied to the pin.

Review Questions
6.1 Define SET and CLEAR.
State the appropriate register and bit 1o accomplish the following actions. In your answer
list the register label name, the actual memory location in hexadecimal, the bit label
and the bit number. Use the question 0.2 as the example.

6.2 Which bit is manipulated to switching to Bank 1?

6.3 What register and bit would you read to determine if an arithmetic action resulted in a
zero result?

6.4 Enable the weak pull-up resistors on PORTA 27
6.5 Disable all weak pull-up resistors associated with PORTA?

6.6 To what register would you load the factory determined internal oscillator calibration
value?

6.7 How would you configure the appropriate registers to make PORTA, O;PORTA, 2,
and PORTA, 4 as digital outputs, and PORTA, 1 as an analog input.

Working with Registers — The Most Important Chapter 6-9

Instruction Set
Overview

Objective: To briefly review the instruction set or opcodes that are available (o build programs for the
PIC16E676 device. The review will include examples of how the instructions are implemented in code.

Reading: PICI6F630/676 Data Sheet, pages 71-82.

Computer Program Languages

A compuier program 15 a collection of instructions or commands that are arranged to
accomplish some task. The collection of instructions and the rules that must be followed
to use those instructions (called syntax) make up the computer program language. There
are a number of different computer languages that range from those that are considered
high level languages that are more like the language we use in everyday life, to low level
languages that are somewhat like everyday language but with a structure that 1s related
to the language used by the computer, to machine language that is the collection of
instructions or commands in binary form that are actually used by the computer. Assembly
language which is a low level language presented in this text is a bridge between higher
level languages and machine language. To use assembly language, the user needs a firm
understanding of the internal architecture of the MCU being programmed. In addition, the
user needs to break up the end task to be accomplished in to small manageable sections.
For example, consider the act of tying your shoes. A computer program to accomplish
this task in a high level language might be “tie your right shoe; then tie your left shoe.”
An assembly language program might be “locate right shoe; grasp left end of shoe lace
in left hand and right end of shoe lace in right hand; cross your right and over your left
hand”...and so on. A machine language program would go into further detail and look
at the nevral impulses needed to move the muscles in your arms and hands. Why would
one want to work with assembly or machine language? The bottom line is execution
speed and efficiency. The trade-off is that 1t will take more time and thought to develop an
assembly language program and 1t in all ikelthood would be limited for use to one MCU
device or the related family of devices for which the program is developed.

Assembly Language Instructions Set Categories

7-2

Chapter 7

Now with that daunting context in mind, it really isn’t that difficult to use assembly
language. The vocabulary of the assembly language used by the PIC16F676 and the
related family of Microchip microcontrollers consists of only 35 words. And just as in
any language, there is a small number of vocabulary words that are used often, others
used infrequently. The assembly language instruction set is divided into four basic
categories: operations that manipulate a byfe, operations that manipulate bifs, operations
that use literal numbers {constants), and operations that control the program flow. The
action words in the assembly language vocabulary are called opcodes. The byte, bit,
memory location, or program line that is being acted upon, changed, or manipulated in
the operation is called the oprand.

The MPLAB IDE is an umbrella software package that manages a number of other
software packages that are used to develop the program. The Editor is a word-processor-
like program where you will author the program. The MPASM Assembler translates the
assembly language code that you develop in the Editor into the machine language code
that is loaded into the MCU program memory. The Simudator allows you to run the
program code within software to monitor the flow of the program, predict execution times
and debug the program. The assembler looks for the vocabulary words of the assembly
language that are used within the context of the accepted syntax for the language. If the
vocabulary or the syntax are used in error, the assembler will terminate the assembly
process and give you a hint as to the error(s) that need attention. If the vocabulary or
the syntax are correct, the assembler will generate a collection of files, including the

machine language file, that facilitate the loading of the program into the MCU. Using the
vocabulary within the rules specified by the syntax does not necessarily mean that your
program will run correctly, just that you followed the rules. Making your program also
run correctly requires the use of the simulator, and some trial and error.

The Instruction Set or Opcodes of Assembly Language

The remainder of the chapter will detail the opcodes that make up the vocabulary
of the assembly language. There are a few conventions to keep in mind during this
discussion. The Jetter f refers to a register that is the target of the opcode and the register
could be a Special Function Register (SFR) or a variable memory location. The letter
w refers to the w-register. Virtually all actions on registers need to pass through the
w-register. Consider the w-register as your working register. The letter k refers to a
constant. A constant is some static numerical value that can be assigned an alias in
the definition section of the program code or it can be an actual number. Constants
can be in decimal form (identified with a period [.] before the number — .123),
hexadecimal form {identified with Ox at the beginning of the hex number — 0x7b), or
binary form (identified by a leading b and the binary numbers between apostrophes —
b’01111011"). The letter d refers to the destination register where the result of the
opcode action will be stored. If d=0 then the result will be stored in the w-register,
if d=1 then the result will be stored in the target register (f) of the opcode. In the code
examples in this text you will see the letters f and w used in piace of the numbers 1 and
0. If you review the contents of the PIC16F676 . inc file you will find that the letters
f and w are defined as aliases for the numbers | and 0 respectively. The letters are used
in place of the numbers to make the code more readable and more consistent with the
instruction set surmmary that is included in the device documentation.

The STATUS Register

There is one more topic that needs to be discussed before getting into the specifics
of the opcodes — the STATUS register. The STATUS register is modified when many of
the opcodes are executed and it is important to be familiar with how and when this SER is
changed. Of the 8-bits inn the STATUS, the most commonly monitored bits are the
Zero bit, Z and the Carry/Borrow bit, C.

Bank STATUS
RP RP1 RPO TO PD Z DC C
Reserved Reserved Register Bank Time-out bil Power-down bit Zero bit Digil Carry/Borrow bit Carry/Borrow bit

STATUS

The STATUS Register contains flags that are SET or CLEARED by arithmetic
operations, specific reset conditions, and a-control bit for register bank selection. The
reset flags will not be covered in this text. The Digit Carry/Borrow flag bit, DC, is SET
when there is an overflow of a nibble within an oprand. This flag is not used during the
exercises of this text. The Register Bank bit, RP0, is used extensively to switch between
the memory banks by using BANKSEL. If RPQ is SET, memory bank 1 is accessed,
with RPO CLEAR, memory bank 0 is accessed. The Zero flag bir, z, 1s SET when an
arithmetic operation or other operation on an oprand results in 0x00. If Zis CLEAR the
result was not zero. The Carry/Borrow flag bit, C, has two uses. If the C bit is SET, then
an arithmetic operation on an oprand resulied in an overflow from 0x££ to 0x00. If the

Instruction Set Overview 7-3

¢ bit is CLEAR, an overflow did not occur. The C bit also accepts the bit that falls out
of a register. When the bits are rotated either left or right, the old contents of the C bit is
rotated back into the register.

Opcode Descriptions

Example code:

addlw Add literal and w
Syntax: addlw k
STATUS bits affected: c, D, Z

The addlw opcode takes the literal oprand and adds it to the contents of the

w-register. The result is loaded into the w-register overwriting the previous contents of
that register. The PIC16F676 is an 8-bit device so arithmetic operations that use numbers
greater than 255 or have a result greater than 255 will require the use of binary math
techniques and multi-byte levels. There are comprehensive hbraries of mulii-byte level
raath routines posted on the Microchip Web site that can be accessed and incorporated in
your code with minor modification depending on the MCU device. In the code exercises
in this text, this opcode is used primarily to convert the numbers O through 9 into the
ASCII code needed to display those numbers as text on an LCD. This requires adding 48
to the number to convert the numbey into the equivalent ASCII code (well within 1-byte).
This opcode is used with moderate frequency.

Example code:

mov 1w .48

addlw .123

addlw b’ 01111011"°

addlw 0x7b

addwf Add w-register and f

Syntax: addwit, f or d
STATUS bitg affected: c, DC, 2

The addwf opcode is similar to add1lw except that the contents of the f register are

added to the w-register. The result is either loaded into the f or w-register as set by the
oprand letter identifier or the number 1 or 0. This opcode is used infrequently.

movlw .23
movwf varili
movilw .48
addwf vari, f

In this case the operation would add 23 and 48 and the result loaded into and

overwriting the contents of vari.

movlw .23
movwi varl
movlv .48
addwf varl, w

In this case the sum would be loaded into and overwriting the contents of the w-register.

7-4 Chapter 7

andlw AND the literal and w-register

Syntax: andlw, k
STATUS bits affected: Z

The andlw opcode takes the literal oprand and logically ANDs it with

Table 7.1 ~ Boolean Truth Table for the the contents of the w-register with the result leaded into the w-register.
AND Operation Table 7-1 contains the Boolean truth table for the AND operation.

Input

—~ 00D

Output This opcode is useful to mask specific bits within a byte. This opcode is
used with moderate frequency primarily in masking operations.

moviw varl

andlw br11110000"

This code masks the low nibble of the byte in varl and stores the

-0 =00
- 0 C O

high nibble, unchanged, into the w-register (the low nibble is returned to
b’ 0000").

andwf AND W with f register

Syntax: andwi, d or &
STATUS bits affected: Z

The andwf opcode is similar to andlw. andwf takes the contents of the oprand
variable or memery location and logically ANDs it with the contents of the w-register with
the result loaded into either the w or f register. This opcode is used infrequently.

Example code:

moviw varl

andwf varz, w

This code compares the contents of varl and var2 with the result placed in the
w-register leaving the contents of var2 unchanged.

bef CLEAR the specified bit im the f register

Syntax: bct varl, 2
STATUS bits affected: None

The bef opeode s used to manipulate (CEEAR) a single bit within the oprand

register. This opcode is used frequently.
Example code:

bcf OPTICN_REG, RAPU

This code CLEARS bit 7 of the OPTION REG to enable individually enabled weak
pull-up resistors, RAPU is defined in the PIC16F676.inc file as equal to 7. An
alternative form for this instruction would be:

bef OPTION REG, 7

bsf SET the specified bit in the f register

Syntax: bst varl, 2
STATUS bits affected: None

The bsf opcode is used to manipulate (SET) a single bit within the oprand register
and is the opposite opcode to bef. This opcode is used frequently.

Instruction Set Qverview 7-5

7-6

Exzample code:

bsf OPTION_ REG, RAPU

This opcode SETS bit 7 of the OPTION REG to disable weak pull-up resistors.
RAPU is defined in the PIC16F676.inc file as equal to 7. An alternative form for this
1nstruction would be:

bst OPTION_ REG, 7

Example code:

btfss Test a specified bit in f, skip next instruction if the bit is SET

Syntax: btfss wvarl, 7
STATUS bits affected: None

The opeede is used to make branching decisions based on the state of an individual
bit within the oprand register. If the bit of interest is SET, the next instruction is skipped
and a nop instruction is executed instead (this makes the number of instruction cycles
the same regardless of whether the next instruction is skipped or executed). The program
continues with the instruction following the skipped instruction. If the bit of interest is
CLEAR, the next instruction is executed. This opcode is used frequently.

bLiss INTCOM, TOIF
goto no TMRO_ interrupt
movwi varl

This code checks the status of the TMRO interrupt flag in the INTCON register. If
the bit is SET (an interrupt occurred) the next goto opcode is skipped and the program
continues with the movwf instruction. If the bit is CLEAR (an interrupt did not cccur) the
goto instruction 1s executed.

Example code:

btfsc Bit test f, skip next instruciion if CLEAR

Syntax: btfsc wvarl, 7
STATUS bits affected: None

The opcode is the opposite of the btfss opcode and also used (0 make branching
decisions based on the state of an individual bit within the oprand register. If the bit of
interest is CLEAR, the next instruction is skipped and a nop instruction is executed
instead. (This makes the number of instruction cycles the same regardless of if the next
instruction is skipped or executed.) The program continues with the instructicn following
the skipped instruction, If the bit of interest is SET, the next instruction is executed. This
opcode is used frequently,

btfsc INTCON, TOIF
goto TMRO interrupt
moevwe varl

This code checks the status of the TMRO interrupt flag in the INTCON register. If
the bitis CLEAR (an interrupt did not occur) the next goto opcode 1s skipped and the
program continues with the movwf mstruction. If the bit is SET (an interrupt occurred)
the goto instruction is executed.

Chapter 7

call Call to execute a subroutine

Syntax: call subroutine label
STATUS bits affected: None

The call opcode causes a jump to the subroutine that is identified by the label in

the oprand. Upon a subroutine call, the program counter for the first instruction to be
executed on return from the subroutine is pushed onto the hardware Stack and a jump to
the subroutine is executed. There is limited stack space so the number of nested calls to
subroutines must be considered. After the return from the subroutine, program counter is
pulled from the Stack, to cause a jump back to the calling program. This opcode is used

frequently.
Example code:
call interrupt_service
clrf CLEAR the register or variable f

Syntax: clrf wvarl
STATUS bhit affected: Z

The clrf opcode CLEARS the contents of the oprand variable or register to 0x00

and also SETS the z bit of the STATUS register. This opcode is used with moderate

frequency.
Example:

clrf varl

clrw CLEAR the W-register

Syntax: clrw

STATUS bit affected: Z

The clrwopcode CLEARS the contents of the w-register to 0x00. There is no
oprand needed for this instructicn since the w-register is implied by the opcode. The Z bit
of the STATUS register is SET by the execution of this opcode. This opcode is used with
maderate frequency.

Example:

clrw

clrwdt CLEAR the Watchdog Timer

Syntax: clrwdt

STATUS bits affected: TO, PD.

The opcode clrwdt resets the Watchdog Timer and the prescaler when it is
assigned to the Watchdog Timer. This opcode also CLEARS the TO and PD interrupt
flags in the STATUS register. There 1s no oprand argument for this opcode. This opcode
is used infrequently.

Example:
clrwdt

Instruction Set Overview 7-7

7-8

comf Complement the contents of the f register

Syntax: comf varl, d or £
STATUS bit affected: Z

The opcode comf complements the contents of the oprand variable or register and
loads the result into either the oprand target register or the w-register. Complementing
a binary number turns 0’s inte 1’s and 1’s into 0’s. For instance if the contents of varl
was b’ 00001111, the result of executing comf varl, f would result in the value
b’11110000° being loaded into varl. Complements are frequently used in rwo's
complement arithmetic. The subtrahend is turped into a two’s complement which is
the negative of the absolute value of the subtrahend. Once the subtrakend is negative
{complemented) it can be added to accomplish the subtraction. The two’s complement
method of subtraction has the advantage of not requiring that the sign of the number to
be analyzed to determine whether the operation is addition or subtraction. This opcode is
used infrequently and primarily in binary mathematics algorithms.

Example:
comf varl, w
decft Decrement the contents of the oprand.
Syntax: decf varl, 4 or £
STATUS bit affected: 2
The opcode dect decrements the contents of the oprand variable or register and the
result is loaded into the f or w-register as specified. If the decrement results in zerg, the Z
bit 1s SET in the STATUS register. This opcode is used infrequently.
Example:
dect varl, f
btfss STATUS, %
got.o not zero routine
moviw
decfsz Decrement the contents of the oprand and the next instruction is

Chapter 7

skipped if the result is zero.

Syntax: decfsz varl, d or £
STATUS bit affected: Z

The opcode dectsz decrements the contents of the oprand variable by | and places
the result either in the f or w-register. This opcode is frequently used in controlled loops
that require a definite number of iterations. The variable used as a counter is loaded with
a starting value equal to the number of iterations. The counter variable is decremented
at the end of each loop iteration. The result of that decrement is tested if the result is
zero, and a loop back or loop exit is executed accordingly. In this case, the results
of decfsz would have to be loaded back into the f register for the counter scheme to
function. This opcode is used frequently.

Example:

movlw .8
movwE counter
loop
loop code here
decfsz counter, £
goto loop
After Joading the number of desired loop iterations into the variable counter, the
counter variable is decremented at the end of the loop, the 2 flag tested to see if the
counter has been decremented to zero, and the loop is executed again until the counter
reaches zero.
goto Unconditicnal jump or branch to a2 labeled program segment
Syntax: gcto routine to_do_something
STATUS bit affected: None
The goto opcode causes a jump to some labeled segment of the program code.
The program counter 1s loaded with the address of the code segment and the program
execution continues at that new location. This opcode is used frequently.
Example:

wait_ for button
btfss PORTA, 2
goto putton pressed
goto wait_for button

In this code the PORTA pin 2 is sensed. If the pin is SET, the button has not been
pressed, the pext instruction s skipped, and the goto wait_for button loop
continues to wait for the button press. When the button is pressed, the pin is CLEAR, and
the next instruction is executed te jump to the button_pressed code.

incf The oprand register is incremented by one.

Syntax: incf varl, d or £
STATUS bit affected: Z

This opcode is the opposite of decf. The opcode incf increments the contents of
the oprand and the result is loaded into the f or w-register as specified. If the increment
results in an overflow from 0x££ to 0x00, the Z bit is SET in the STATUS register. This
opcode is used infrequently.

Example:
inct varl, w
btfss STATUS, Z
goto not_zero

Instruction Set Overview 7-9

incfsz The oprand register is incremented by one, the result is loaded into the
w-register or the oprand, and the next instruction is skipped if the result of the increment is
zero. This opcode is similar but opposite to decfsz.

Syntax: incfsz varl, d or £
STATUS bit affected: Z

The opcode incfsz increments the contents of the oprand variable or register by [
and places the result either in the f or w-register. This opcode can be used in controlled
loops that require a definite number of iterations. The variable used as a counter is loaded
with a starting value equal to 256 minus the number of iterations. The counter variable is
incremented at the end of each loop iteration, the result of that increment is tested if the
result is zero, and a loop back or loop exit is executed. In this case, the resulis of incfsz
would have to be loaded back into the f register. This cpcode is used infrequently.

Example:
movlw 248
movwf counter
loop
loop code here
inclsz counter, f
goto loop

The code will load the counter variable with a starting value of 248. Each time
through the 1oop, the value of counter will be incremented by 1. When counter
increments through Oxff to 0x00, the Z flag will be SET and the program will exit the
loop and continue with the rest of the program.

iorlw Inclusive ORs the literal with the W-register with the result loaded into the
W-register.

Syntax: iocrlw k
STATUS bit affected: Z

The iorlw opcode takes the literal oprand and logically CRs it with the contents of
the w-register with the result loaded into the w-register. Table 7-2 contains the Boolean
truth table for the OR operation. This opcode 1s used infrequently.

Example code:

moviw varl
andlw b 01020101"

Table 7.2 — Boolean Truth Table
for the OP Operation

tnput Output
A B

0 C 0

0 1 1

1 0 1

1 1 1

7-10 Chapter 7

iorwf Inclusive ORs the contents of the w-register with the contents of the oprand
register. The result is loaded into either the w-register or the oprand.

Syntax: iorwf, d or £
STATUS bit affected: 2

The torwf opcode is similar to iorlw. iorwf takes the contents of the oprand
variable or memory location and logically ORs it with the contents of the w-register with
the result loaded into cither the f or w-register. This opcode is used infrequently.

Example code:
moviw varl
iorwf vara, w

This code compares the contents of varl and var2 with the result placed in the
w-register leaving the contents of var2 unchanged.

movE The contents of the oprand register are moved back into the oprand register
or the W-register.

Syntax: movf wvarl, £
STATUS bit affected: Z

The mov £ opcode allows you to move the contents of the oprand register into itself
or the w-register. The opcode movfw also will accomplish this task. (This opcode is not
listed in the device documentation.) The instruction movf varil, f, which moves the
contents of the register varl back into varl seems a bit redundant, however, because
the z flag of the STATUS register is affected by the move if the contents of the register be
zero. This is a way to test the contents for zero. This opcode is used infrequently; movEw,
however, is used very frequently.

Example code:
movE varl, £

Move the contents of varl and store it back into varl, the z flag is affected if the
contents were zero.

movf varl, w

Move the contents of varl into the w-register. The instruction meviw varl could
also have been used.

movlw The literal oprand is loaded into the w-register. The literal oprand can
be a defined constant, a decimal number (122}, a hexadecimal number (0x£2), a binary
number (b’ 00100001), or an ASCII code representation of a character (a”).

Syntax: moviw .45
STATUS bit affected: None

The 8-bit literal is loaded into the w-register, the Z bit of the STATUS register is not
affected by this operation. This opcode is used frequently.
Example code:

mov1w b’ 100000210
movlw rCr

movlw .75

movliw OxEf

Instruction Set Overview 7-11

movw The contents of the w-register is loaded into the oprand register.

Syntax: movwf wvarl
STATUS bit affected: None

The contents of the w-register is loaded into the oprand register, the Z bit of the
STATUS register is not affected by this operation. This opcode is used frequently.
Example code:
movlw .75
movwi varl

This code loads the literal 75 into the w-register and then loads the contents of the
w-register (75) into the varl variable location.

nop This opcode performs no operation except to hold time for one instruction
clock cycle.

Syntax: nop
STATUS bit affected: None

The nop opcode is frequently used as a place holder for debugging purposes and is
also frequently used to fine tune delay subroutines to a specific number of instruction

cycles.

Example code:

movlw .8

movwf counter
delay lcop

nop

nop

goto exit_delay

retfie This opcode is used to return the program control to the main program
after an interrupt has been serviced by a subroutine.

Syntax: retfie
STATUS bit affected: None however, INTCON, GIE is SET

Upon execuling the retfie opcode, the program counter is pulled from the Stack
and the GIE flag of the INTCON register is SET to allow global interrupts. This opcode
is used frequently.

Example code:
Interrupt_service

bef INTCON, TOIE
bcf INTCCN, TOIF
nop

retfie

7-12 Chapter 7

retlw This opcode loads the w-register with the value of the literal oprand just
prior to returning the program control to the main program.

Syntax: retlw .123
STATUS bit affected: None

Upon executing the retlw opcode, the w-register is loaded with the literal oprand
and the program counter is pulled from the Stack to cause a return to the calling program
at the end of the subroutine. This opcode is used with moderate frequency particularly
when data tables are used.

Example Code:

get_data
moviw temnp
addwf PCL, £
retlw ‘a’
retlw ‘b
retliw ‘ot

In the above subroutine, the location of the required data byte in the table is loaded
into the variable temp prior to the subroutine call. The value in temp is loaded into the
w-register and then added to the program counter. This causes a jump to the appropriate
line of data where the literal value of the data byte is loaded into the w-register by the
retlw opcode before program control is returned to the calling program.

rlf This opcode rotates the contents of the oprand register one bit left
through the C bit of the STATUS register.

Syntax: rlf varl, £
STATUS bit affected: C

The r1f opcode rotates the contents of the oprand register one bit left and puts
the MSB into the C bit of the STATUS register after the previous contents of the C bit
is rotated into the LSB of the oprand register. The result is either loaded back into the
oprand or the w-register as assigned. This opcode 1s used frequently particularly in serial
communications subroutines and/or ADC operations. This opcode can also be used to
multiply the contents of the oprand by 2.
Example code:

bef STATUS, C
rlf low_byte,
it high_byte,

This code begins by clearing the C bit of the STATUS register to avoid corrupting the
oprand with the previous contents of the C bit. The low byte of a 16-bit number 1s rotated
left one bit, with the MSB placed in the C bit. The high byte of the 16-bit number is then
rotated left by one bit with the contents of the C bit from the previous operation placed in
the LSB of the high byte of the number. This operation multiplied the 16-bit number by 2.

Instruction Set Overview 7-13

7-14

Example code:

return This opcode terminates a subroutine and pops the program counter off the
Stack to return control back to the calling program.

Syntax: return
STATUS bit affect: None

Care should be taken to ensure that nested subroutine calls do not corrupt the limjted
Stack space available. This opcode is used very frequently.

delay1lm$S
movlw 198
movwf count
nop
20to $+1
goto 3+1
dlylmS
goto $+1
decfsz count, F
goto dlylmS
return
rrf This opcode rotates the contents of the oprand register one bit right

Example code:

through the C bit of the STATUS register.

Syatax: rrf varl, f
STATUS bit affected: C

The rrf opcode rotates the contents of the oprand register one bit right and puts
the LSB into the C bit of the STATUS register after the previous contents of the C bit
is rotated into the MSB of the oprand register. The result is either loaded back into the
oprand register or the w-register as assigned. This opcode is used frequently particularly
in serial communications subroutines and/or ADC operations. This opcode can also be
used to divide the contents of the oprand by 2.

bef STATUS, C
of high_byte, f
rf low_byte, f

This code begins by clearing the C bit of the STATUS register to avoid corrupting
the oprand with the previous conftents of the C bit. The high byte of a 16-bit number is
rotated right one bit, with the LSB placed in the C bit. The low byte of the 16-bit number
is then rotated right by one bit with the contents of the C bit from the previous operation
placed in the MSB of the high byte of the number. This operation divides the 16-bit
number by 2.

Chapter 7

sleep This opcode is used to terminate the execution of the program and place
the MCU device in a low power consumption state.

Symntax: sleep
STATUS bits affected: TO and PD

Example code:

Specific changes on certain resources will “wake” the device from the sleep
condition. This epcode is used infrequently.

movE PORTA, £
moviw b* 000010007
wmovwf INTCON
sleep

bsf FORTC, 3

The use of sleep requires some careful programming consideration. In the above
code, the GIE bit of the IwTCON register is CLEARED to disable global interrapts prior
to the device being put into the low power consumption state. When a change occurs
on an IO pin of PORTA, the device wakes up and the next instrizction after the sleep
opcode is executed. Had the GIE bit been SET to enable interrupts, an interrupt would
have been executed after that next instruction (bsf PORTC, 3) was executed which may
or may not have had the intended consequences. In other words, if interrupts are enabled
prior to executing sleep, the wake stimulus will generate an interrupt. If interrupts are
disabled prior to executing sleep, the wake stimulus will cause the program to continue at
the point after the device was placed in the sleep mode.

sublw This opcoede subtracts, using 2's complement methods, the contents of the
w-register from the literal oprand with the result loaded back into the
w-register.

Syntax: sublw 123

STATUS bits affected: C, DC, and Z

The sublw opcode allows for simple 8-bit subtraction. Subtraction of larger
numbers would require other programming algorithms (similar to those required for
addition of numbers larger than 8-bits). The STATUS register Z bit is SET if the resuit
of the operation is zero. The status of the C and DC bit will require some thought. The
subtraction actually is accomplished by the addition of two’s complement numbers and
therefore the polarity of these bils is reversed. This opcode is used infrequently.

You must use care to ensure that the subtrahend (the number in the w-register) is
the lesser of the two numbers being subtracted or you will get umntended results. For
instance, let’s take a look at the code to accomplish 3 - 2. The number 2 is first loaded
into the w-register and then the contents of the w-register are subtracted from the literal
oprand 3 with the result loaded back into the w-register:

movlw .2
sublw .3

At the end of this operation, the w-register would contain k' 00000001’ or decimal
1, and the C and DC bits of the STATUS register are SET (remember that in subtraction
the polarity of these bits is reversed so SET means no carry or borrow).

Now let’s take the opposite case and accomplish 2-3. The number 3 is first loaded
into the w-register and then the contents of the w-register are subtracted from the literal
oprand 2 with the result loaded back into the w-register.
movlw .3
sublw .2

Instruction Set Overview 7-15

7-16

At the end of this operation, the w-register would contain b’ 11111111’ or decimal
255, and the C and DC bits of the STATUS register are CLEAR (again remember that in
subtraction the polarity of these bits is reversed so CLEAR means a carry or borrow
did occur). Certainly not the answer expected! To make sense of this result you would
need to complement the contents of the w-register using a variable location and the
comf opcode and then add one to the result. The best thing to do, however, is to avoid
these complications and make sure the content of the w-register is the lesser of the two
numbers.

Example code:

subwf This opcede subtracts, using 2°s complement methods, the
contents of the W-register from the oprand vanable with the result
loaded back into the w-register or the oprand variable as directed.

Syntax: subwf vari, £ cr w
STATUS bits affected: C, DC, and Z

The same precautions as listed for sublw above apply to this use of this opcode. This
opcode is used infrequently.

movlw .3
movwi varl
movlw .2
subwi varl, £

The literal value 3 is first loaded into the variable vari, next, the literal value of 2 is
loaded into the w-register and this value is subtracted from var1 {the number 3) with the
result retumed to varl. The STATUS 2 bit is CLEAR (non zero result) and the DC and C
flags are SET indicating no carry or borrow operation.

Chapter 7

swapf The opcode swapf swaps (or exchanges) the nibbles within the oprand
register. The low nibble (bits 0 - 3) replace the high nibble (bits 4 - 7)
and vice versa. The results are loaded back into the oprand register,
or variable, or into the W-register as directed.

Syntax: swapf varl, f or w
STATUS bit affected: None

The real power of this opcode comes from the fact that the Z bit of the STATUS
register 1s not affected even if the result of the nibble movement is zero. This is useful
in preserving the contents of the STATUS register during interrupt subroutine calls.
Movements of register contents into and out of temporary variable locations to preserve
the pre-interrupt contents using movt or movEw opcodes could corrupt the STATUS z bat
state because if zero is being moved, the Z bit will the SET. However, if you swapf into
the temp variable location and then again swapf out of the temporary variable location,
the integrity of the original number is retained and the z bit is unaffected by this opcode
even if the value of zero is being moved. This opcode 1s used infrequently but is very
useful in interrupt service subroutines to restore the contents of the w-register and the
STATUS resister to pre-interrupt states.

Example code:

movwi w_LCemp

swapf STATUS, w
movwi status_temp
swapf status_temp, w
movwE STATUS

swapf w_temp, £
swapf w_temp, w
retfie

The movwt opcode does not affect the Z bit so the contents of STATUS is preserved.
Adter the STATUS byte is recovered, the multiple swapf opcodes return the w-register to
the pre-interrupt state without corrupiing the STATUS byte (the 2 bit in particular).

Example code:

xorlw Exclusive XORs the literal with the w-register with the result loaded
into the w-register.

Syntax: xorlw k
STATUS bit affected: Z

Table 7-3 — Boolean Truth

) Table for the XOR Operation.
The xorlw opcode takes the literal oprand and

)) . . Input Output
logically XORs it with the contents of the w-register with A . B
the result loaded into the w-register. Table 7-3 contains 0 0]
the Boolean truth table for the XOR operation. This 0 1 1
opeode is used frequently, particularly when toggling /O 1 ? (1)

pin states and for comparing two numbers for equality.

moviw varl
Xorlw b’ 01010101"

In this code, if the individual comparable bits are [then the associated bit will be
CLEARED in the w-register. If the individual comparable bits are not both 1, then there is
no change in the associated bit ip the w-register.

Example code:

xorwi Exclusive XORs the contents of the W-register with the contents of the
oprand register. The result is loaded into either the w-register or the oprand.

Syntax: xorwf, d or £
STATUS bit affected: Z

The xcrwt opeode is similar to xorlw. xorwE takes the contents of the oprand
variable or memory location and logically XORs it with the contents of the w-register with
the result Joaded into either the f or w-register. This opcode is used frequently to toggle /O
pin states, if SET then it will be CLEARED, if CLEAR then it will be SET.

moviw varl
xorwf PORTA, £

This code compares the contents of varl and var2 with the result placed in the
PORTA register. If LEDs were tied to the PORTA resources, those LEDs would be toggled
on and off in relation to the bit pattern loaded into the varl variable location.

instruction Set Overview 7-17

Assembler Directives

Directives

7-18

Example code:

So far we have been reviewing the instruction set or opcodes of assembly language.
These are mpnemonic representations of machine language instructions that the MPLAB
IDE Assembler translates into machine langnage that makes up the actual program
instruetions that are executed by the MCU. In the example program code that is included
in the following chapters of this text, you will find additional lines of code that appear
similar to opcodes, but they are in fact very useful and powerful assembler directives.

Assembler direcrives, as stated, appear in the source program code, but generally
they are oot translated into opcodes or instructions. Directives are commands that are
used to control the assembler and the assembly process. Directives help make the code
transferable, translatable, and portable to other PIC-MCUs.

The following list of directives are used in the example code of this text, however
this is only a partial listing of the directives. More detailed information about individual
directives and how they can be applied in your code can be found in the MPLAB IDE
Help files.

list

Syntax: list p=PIC name

The list directive is used in the code examples to set the intended processor type.
The processor type can also be set in the MPLAB IDE under the CONFIGURE menu
options. The list directive takes precedence over the CONFIGURE menu options when the

check box is checked in the menu options.

list p=16F&786 ;list directive to define
processor

Example Code:

#include
Syntax: #include <pfile.inecs

The files specified in the #include directive are read and integrated into the
program code as additional source code. The effect is as if the include file were typed
into your source code. The pl16f676.inc file contains constant definitions that connect
specific numerical constants, register locations, and mnemenic label representations for
registers and individual bits that mirror the device documentation fo facilitate program
readability. It is a good idea to print out the contents of the device .inc file for reference
during code development. Code source files that contain commonly used portable code
such as delay and math routines can be accessed by other programs through the include
directive. There is an extensive library of useful code that is available on the Microchip
Web site that can be integrated into your cade through proper definition of variables and
use of the $include directive (unfortunately an advanced topic that is beyond the scope
of this text).

#include <pléfe76.1inc> ;jprocessor specific variable
;definiticons

Chapter 7

__config

Example code:

8yntax: _ config AAA& BBB& CCC

The _ config directive sets the PIC-MCU’s configuration bits within the
configuration word register, a 14-bit register. The configuration bits include: Bandgap
Calibration, Data Code Protecticn, Code Protection, Brown-out Detect
Enable, RA3/MCLR pin functicn, Power-up Timer Enable, Watchdog Timer
Enable, and Cscillator Selection bits. These bits can also be configured using
the CONFIGURE/CONFIGURATION BITS menu option. The _ ceonfig directive takes
precedence over the CONFIGURE/CONFIGURATION BITS menu selection when the
appropriate check box is checked in the menu options.

It is important that the 1ist and #include directives precede the _ config
directive so that the assembler knows the device type before setting the configuration bits
and where to find the mnemonic representations. The mnemonic representations used
for the individual configuration bits, either on or off, are defined in the device .inc file.
These mnemonics help in making the code more readable.

_ _CONFIG _CP OFF & WDT OFF & BODEN & _PWRTE ON & _INTRC_
0OSC_NOCLKOUT & MCLRE_OFF & _CPD OFF

Example code:

#define .
Syntax: #define variable literal

The #define directive defines a mnemonic substitution label that represents a literal
constant. The literal constant can be a number or a string. During assembly whenever the
label is encountered in the code, the literal constant is substituted.

fdefine Bank(0 0x00
gdefine Bankl 0x80
#define CS 0x03
#define LED1 PORTA, ¢

Example code:

org
Syntax: org 0x00

The org directive sets the program origin at the address specified in the defined
expression. When the device is first powered-up or a reset is forced, the program counter
will begin at the location specified by the org directive. The other common origin
definition is the location for interrupts.

org 0x0Q0 ;for processor reset vecter

nop ;required by in circuit debugger
goto Init ;go to beginning of program

crg 0x04 ;for interrupt vector

goto interrupt_service

return

cblock and endc

Instruction Set Overview 7-19

7-20

Example code:

Syntax: cbleck
endc

The cblock directive assigns variable name labels to specific memory addresses
within the memory locations reserved as General Purpose Registers. The memory
addresses begin at the memory address that is the oprand of the chlock directive and
end with the endc directive. In the case of the PIC10F076, the General Purpose Register
memory space rns from 0x20 through 0x5E. In other devices with extended memory,
the General Purpose Registers may be divided among numerous pages of memory. The
cblock directive would then be used to dictate the memory location of specific variables
in specific memory pages.

cblock 0x20
Ww_temp
status_temp
endc

In this code example, the variable w_temp would use the memory address of 0x20,
status_temp would use 0x21 and $0 on.

Example code:

banksel

The banksel directive is a convenient way to switch between the memory banks
with code that is more readable than addressing the individual register bank (bank
select) bits within the STATUS register (in the case of the PIC165676 device). The
label that represents the bit pattern that specifies the memory bank is defined before the
banksel directive is implemented.

#define Bank0 0x00
#define Bankl 0x80

Then later in the code:

Example code:
table get

Chapter 7

BANKSEL Bankl ;select bankl
call 0x3FF ;retrieve factory calibration value
movwf OSCCAL
BANKSEL Bank(;select bhank(
at
Syntax: lapel dt ‘AY, ‘B’, variable label, .123,
b 00010010

The dt directive generates a series of ret 1w instructions in a data table that will load
the w-register with the 8-bit value of the offset argument and return that value in the
w-register to the calling program code as if the ret 1w opcode were executed. The offset
for the desired value in the data table 1s added to the low byte of the program counter
which causes a jumnp to the desired value and an retlw opcode is executed.

moviw temp
addwft PCL, £

tabledt LCD_LINEO, 'P’, ‘0", "t
In this code segment, the offset is passed through the variable temp. The offset is
loaded into the w-register which in turn is added to the program counter. This causes a
jump to the desired location within the data table. The dt directive generates a ret 1w
opcode with the desived table data value returned to the calling program in the w-register.

end
Syntax: end

The end directive indicates to the assembler that the code is complete. There should
be one end directive. Care should be exercised so that unwanted end directives are not
included within include files or partial assembly may result.

Summary

The instruction set or opcedes are the meat of assembly language. There are 35
opcodes, or words, that make up the vocabulary of the assembly language. The opcodes
are mnemonics that help the programmer to create more readable code. The opcode
vocabulary words are recognized and translated by the assembler into machine language
instruction code that is uploaded to the MCU program memory. The opcodes generally
have associated oprand arguments that are variable memory locations, registers, or
specific bits that are manipulated when the opcode is executed. Opeode operafions can
be byte-oriented, bit-oriented, or control the program flow. The execution of some of the
opcodes also will affect specific bits within the STATUS register. Additionally, there is a
set of assembly directives that look similar to opcode instructions but are used to control
the assembler during the assembly process. The use of directives help to make your code
transferable, translatable, and portable. -

Review Questions
7.1 Does the movE instruction affect the 2 flag of the STATUS resister?

7.2 What value would the instruction movf varl, f serve?
7.3 What precautions should you consider when executing nested cal1 instructions?

7.4 Which of the opcode instructions is useful if you want to toggle an I/O pin to turn on
and off an attached LED?

7.5 What kind of information is included in the device .inc file? What directive would
you use to include the contents of the device . inc £ile in your program code?

7.6 Which INTCON bit is automatically SET when the retfie opcode is executed?

7.7 When using the rrf and/or the r1£ opcodes to rotate bits through the C bit of the
STATUS register, what are some precautions that vou need to consider?

7.8 Is it possible to move values from one memory location or register directly into
another? If so, write a sample of code that would accomplish this task.

Instruction Set Overview 7-21

Device
Setup

Objective: To learn to configure the special features of an MCU and initialize the Special
Function Registers to configure the device resources for a particular application.

Reading: PICI6F630/676 Data Sheet, pages 55-71.

Writing Preliminary Code
Before you can start writing the code for your particular application, you will need

to write some preliminary code to configure the MCU device resources. This prelimimary
code can be divided into two broad categories, special features that are controlled by
the configuration word and the special function registers. The configuration word can
be set and modified either with an assembler directive or by manipulating switches in
MPLAB IDE DEVIGE SETUP menu options. The special function registers are generally
configured at the beginning of the program code as will be illustrated or can be also
modifted during the run-time section of the program code.

Configuring the Special Features

When you first start to construct your program code, you should give some thought
to how you want to configure the special features and use the resources available on your
chosen MCU. Let’s take a lock at the possibilities for the special features. The majority
of these features are not relevant for most of the applications you are likely to write.

[Configure Viindows Help
Sefect Device..,
figuration Bit=...

ra Memory ..,

n 0B =1

s e Consequently you will use the defaults for most of the special features.

o o J There are two ways to configure the special features of the device. First, you can set
Figure 8-1 up the configuration using the MPLAB IDE CONFIGURE menu option. With the device
CONFIGURE selected by clicking on CONFIGURE/SELECT DEVICE, clicking on the CONFIGURE/
ggl’\ﬁ:l%%‘gglme“”[CONFIGURE BITS menu option will open the BIT SELECT dialog window (Fig-
CONFIGURE BITS ure 8-1 then Figure 8-2). The CONFIGURATION BIT dialog window lists the individual

bits that can be SET, the down arrow adjacent to the selected bit will bring down the
- available options. The default it sertings for all
v Delay Subwsstines - MPLAS B3¢ v8. 10+ [Conligenabion Bits] e i i .
TIRe E5 e Fremt Debmager Gogune Toos Cmipue iedkw hen except the oscillator configuration will be used for

:3:3 H| ' ®8 SHF? | oo -lcRBG SHE the programming examples in this text. You are
encouraged to study the assigned reading material to
T _‘“‘E:t‘f —f & learn the specifics of the other special features. The
Internal RC e I
Rart Ehitdg Tty AT © \Z4 various oscillator options will be discussed below.
Poverx Up Timer Oon
Hascer Clear Enable TInrermel
2rown Cut Detect <m . .
Coge Brorest ofs Oscillator Options
Data T Fead Frovect OfFf . . - -
There are eight different oscillator opiions
Figure 8-2 — 1. Check Box for "Configuration Bits Set in available on the PICJ.6F676 The Option selected
Code” 2. The oscillator configuration used in atl the pro- T . ..
gram examples in this text is the INTERNAL OSCILLATOR depends on the application. For applications requiring
WITH NO CLOCK OUTPUT as illustrated above right. a high accuracy or high frequency system clock, one

of the external crystal options should be selected.

Provisions for a high speed crystal or resonator (HS),
rnominal crystal or resonator (XT), or low power crystal (LP) are available by selecting
the appropriate switch setting from the pull down menu options. Clock frequencies up to
20 MHz are possible with the use of external crystals or resonators with the tradeoff being
a higher component count for loading capacitors and also losing two I/O pin resources
that are used to connect the crystal or resonator to the device. For applications requiring
a specific clock frequency but not necessarily high speed or accuracy, the RC oscillator
options would be selected. The clock signal is generated by a resistor-capacitor circuit
combination connected to the internal osctllator circuitry. The actual clock frequency
generated with the RC circuit depends on the supply voltage, the values and tolerances

8-2 Chapter8

of the components, the characteristics of the MCU device and the operating temperarure.,
There are two RC osciilator modes. In both modes, the RC circuit is connected to the RAS
pin. In one mode, the clock frequency is output on the RA4 pin. This would remove two
I/O pins from use. In the second mode, the clock frequency is not put on an /O pin and
therefore only pin RAS is unavailable for use as an /O resource.

The final oscillator options use the internal oscillator. For the PIC16F676, the
internal oscillator runs at 4 MHz which gives an instraction cycle or clock frequency of
1 MHz. One mode outputs the 1 MHz clock frequency on the RA4 pin and consequently
that pin would not be available for general purpose 1/0 in this mode. The second mode
does not output the clock frequency and the /O resource is available. There is a special
note of caution when using the internal oscillator resource. The internal oscillator of
tire device is tested and calibrated at the factory before the device 1s released for sale. A
device specific calibration value is stored in the device memory which the user can read
and then load into a SFR called GSCCAL. The caution is that if the user elects to erase
the device memory for some reason, this calibration value will also be erased and the
accuracy of the internal oscillator will be in jeopardy. There is really no reason to erase
a device, any code you write and store on the device will overwrite the previous code. If
code security is a question, you can set the code protection bits in the configuration word
and the code cannot be read by an unauthorized user. A work-around as a precaution
would be 1o read the device memory using MPLAB IDE and noting the calibration values
for each particular device. Later, if the device is inadvertently erased, these archived
values can be loaded into the OSCCAL register. The best precaution however is not to
erase the device in the first place.

The oscillator configuration used in all the program examples in this text is the
INTERNAL OSCILLATOR WITH NO CLOCK OUTPUT as illustrated in the settings
of Figure 8-2. Note the check box in Figure 8-2 labeled CONFIGURATION BITS SET
IN CCDE. If this box is checked, the configuration that is specified in the program code
takes precedence over the configuration bits as set in this dialog window and this is the
preferred method used in the programming examples of this text. So if you view this
window while exploring the programs of this text, you will see this check box checked.
Once checked, the configuration bits are set by the config directive at the beginning
of the program code and this will be discussed next.

In Chapter 7, assembler directives were introduced. These directives are used by
the assembler to accomplish specific tasks that are related to the program, but they are
not part of the actual program. The _ config directive used by the assembler to set the
desired configuration bits can be done manually using the CONGIFURE menu option
described above. The advantage of using the config directive is that the programmer
controls the configuration bits and this is done independently of the end user. This ensures
that the device is configured to match the code regardless of the settings that the end user
might specify (or neglect to specify). The config directive is used in conjunction with
literal constants that are represented by labels that are specified within the include file
(pic1 6F676.1nc) that is attached to the program with the #include directive. Remember
the include files contain definitions of memory locations and constants using mnemonics
that are consistent with the device documentation and are device specific. Each device has
its own unique .inc file. If you view the contents of the pic16F676.1inc file you will see
this listing of labels and assigned constants:

Configuration Bits

Device Setup 8-3

CPD EQU H’3EFF

_CPD_OFF EQU H’3FFF
_CP EQU H’3F7F
_CP_OFF EQU H’3FFE’
_BODEN EQU H’3FFF’
_BODEN_OFF EQU H’3FBF’
_MCLRE_ON EQU H’3FFF
_MCLRE_OFF EQU H’3EDF’
_PWRTE_OFF EQU H’3FFF
_PWRTE_ON EQU H’3FEF’
_WDT_ON EQU H3FFR
_WDT_OFF EQU H 3P
_LP_OSC EQU H*3FFg’
_XT_0SC EQU H3FFY’
HS_0SC EQU H*3FFA’
_EC_0SC EQU H'3FFR’
_INTRC_OSC_NOCLKOUT EQU H 3FFC”
_INTRC_OSC_CLKOUT EQU H’3FFD’
_EXTRC._OSC_NOCLKOUT EQU H’3FFE’
_EXTRC_OSC_CLKOUT EQU H’ 3FFF’

The mnemonics are selected to help make the labels for the bits more representative
of the bit function and more readable. For instance _CP stands for the code protecrion
bit on, _CP_OFF stands for code protection off. _INTRC_OSC_NOCLKOUT stands for
the internal RC oscillator resource selected with no clock output, this 1s the configuration
used in the example programs of this text. The individual bit settings are logically
AND’ed together to form the configuration word that the assembler then loads into the
MCU. The assembler directive would look like this:

__CONFIG _CP_OFF & _WDT_OFF & _BODEN & _PWRTE_ON & _INTRC_OSC_
NOCLKOUT & “MCLRE_OQOFF & _CPD_OFF

This translates into Code Protect off, Watch Dog Timer off, Brown-out Detect
Enabled, Power-up Timer Enabled on, Internal RC Oscillator with no clock output, RA3
reset pin function is off (internal tied to V), and Data Code Protect off.

Configuring the Special Function Registers (SFRs)

Now let’s turn our attention to configuring the special function registers. The SFRs
are used to configure the resources that are available within the MCU device including
PORT input/output, ADC, comparator, timer and interrupt resources. The details of
these various resources are covered in subsequent dedicated chapters that follow. The
remainder of this chapter will cover a suggested standardized way to initialize the SFRs
based on the desired configuration of the device resources.

Planning How to Use the Available Resources — Developing the Circuit Diagram for the Project

Before configuring the resources, you will have to put some thought into how you
want to utilize the available resources and how the external devices and components
will be attached to the MCU. A good way to accomplish this is to develop the circuit
diagram for the project. For instance, your application may call for user interface push
buttons with pull-up resistors, indicator LEDs with current limiting resistors, and an
SPI temperature sensor that requires data, clock and chip select lines. While you are

8-4 Chapter8

developing the circuit diagram, it would be a good time to consider the physical layout of
the componeunts in the final project. Pay attention to potential crossing circuit board traces
or inferconnecting wires, depending on the type of circuit board being used. Crossing
interconnections may dictate the physical layout of components and which MCU pin is
dedicated to a specific resource. The development of the ¢ircuit diagram, parts layout on
the circuit board and assignment of MCU resources to specific pins is an iterative process
and just as much an art as a science. Good thought and planning at this stage of project
development will make the software development more efficient.

List the Pin Assignments
As the circuit diagram for the project begins to take form, start listing the pin
resources into the following categories:

Output pins

Digital input pins - no weak pull-up resistors required

Digital input pins - that require weak pull-up resistors

Analog input pins

Comparator configuration and pins required

ADC{s) required and pin assignments

Timer resources required and pin assignments for external inputs to timers

~

List the Software Function Requirements

After the pin resources are defined, list the software specific configurations that also
will be initialized in the SFRs:

Timer 0 and/or Timer | nterrupts required

Prescaler requirements for timer resources

ADC output left or right hand justified in the ADC output registers
ADC interrupt required

Comparator voltage reference

Comparator output

Comparator interrupt required

PORT change interrupt required

Armed with this listing of pin assignments and software function requirements,
vou are now ready to author the device initialization code to configure the SFR bits. An
example of a generalized initialization code for the PICI6F676 that you will see in the
example programs in this text is listed below. There are, of course, more elegant and more
efficient ways to configure the SFRs, however, 1 encourage you to follow this example
until you become more proficient in writing code.

Device Setup 8-5

dnitialization

<o e e st ROk o e o et sRof o ok o ket kR e ok R R e s e sk ot sk o sk ok oo R o sk ok kR Rl sk ok s ok R SRk kR sk ok ke skedesk ik ok
3

Init

BANKSEL Bankl

call 0x3FF ;retrieve factory calibration value
movlw OSCCAL

BANKSEL Bank0 ;jselect bank0

Movlw brooo0oo00!

movwi PORTA ;clear port hus

movlw b 00000000

movwi PORTC

movlw b'00000111" ;turn off comparator module
movwi CMCON;

movilw b 000000007 ;interrupts all off

movwi INTCON

BANKSEL Bankl ; BANKL

movlw b’ 00000000 ;enabling weak pull-ups
movwt OPTICN REG ;put w reg into option register
movlw b’ 00000000 ;all output

movwL TRISA ;program PORTA

movlw b"00000000C" ;no weak pull-ups

movwi WEUA

moviw b’00000000" ;all PORTC as outputs

movwi TRISC ;program PORTC

moviw b*G0000000’ ;all pins digital

movwE ANSEL

BANKSEL Bank0 ;back to bank(

;end MCUG initialization

Init

8-6

Basically the code loads the desired SFR bit pattern configuration into the w-register
and the contents of the w-register are moved into the SFR. In this suggested code, the
binary representation of the bit pattern is used so that the individual bits ¢can be compared
to the documentation for the register. The commentis attached to the bit pattern should list
the SFR bit switch configuration to make your code more readable and easier to debug.
Also pote that the memory bank is switched between bank 0 and bank 1 to access the
target SER. You could configure all bank 1 SERs first and then switch to bank 0 and
configure the remainder SFRs in that bank to create some code space savings, but this
might sacrifice the logic nsed to configure the SFRs (there is no real code execution time
savings since this section of code is only executed once).

Remember the meaning of the individyal configuration bits will be covered later in
the associated chapters dedicated to the specific device resource and they were listed in
the previous chapter that discusses the SFRs. The following is a general overview of the
configuration code.

BANKSEL Bankl

call OX3FF ;retrieve factory calibration vaiue
movlw OSCCAL

BANKSEL Bank0 ;select bank0

Chapter 8

Init is the label that identifies the start of the initiahization of the code. The reset
vector section of the code (org 0x00) would contain an instruction goto init to cause
a program jump to this location to begin the program execution. The BANKSEL directive
switches the memory bank to bank 1. The call opcode retrieves the oscillator calibration
code that is stored in memory at the factory (recall the calibration code is part specific
and would be lost if you erase the device memory). The memory location 0x3ff actually
helds the opcode retlw which loads the calibration code into the w-register and then
returns to the calling section of the program with the value in the w-register intact. The
calibration value is then loaded into the OSCCAL register before the bank is switched to
bank 0.

movlw B 00000000

movwi PORTA ;clear port hus
movlw L7 00000000

movwit PORTC

The above code sets all /O pins on the PORTs to zero. This could have been also
accomplished by using the ¢1rf opcode. The PORT registers are frequently manipulated
within the main code.

moviw b’ 00000111" ;turn off comparator medule
movwf CMCON

The above code configares the device comparator resource, in this case the
comparator is disconnected and consumes the lowest power. The comparator is generally
configured here and the configuration is not usnally changed in the'main code.

movlw b’ 0Q000000° ;interrupts all off
movwf INTCON

The above code configures the interrupt resources, in this case all interrupts are
disabled. The INTCON register is frequently manipulated in the main code to control
interrupts.

movlw b’ 10010001’ ;right justified, vdd ref RCO has ADC,
;ADC Stop, ADC on
movwf ADCONO

The above code partly configures the ADC resources. This register is manipulated in
the main code if more than one ADC resource is required in your project, otherwise the

register is configured only in the initialization section of the code.

BANKSEL Bankl ; BANK1

movlw b 00000000’ ;enabling weak pull-ups
movwf OPTION REG ;put w reg into option register

The above code switches banks to change the next few registers. The bit pattern for
the OPTION_REG is loaded here. You will leamn later that the timer 0 will start counting

Device Setup 8-7

Summary

8-8

Chapter 8

clock cycles (start timing) when this register is loaded. This needs to be considered for
the first use of the TMRO resource.

movlw bf 00010000 ;Fosc/8
movwt ADCON1

The above code completes the configaration of the ADC resources. This register
may be manipulated in the main code if more than one ADC resource is required in your
project and there is a unique conversion clock required for each resource. If there is only
one ADC resource or there is a requirement for only one common conversion clock
frequency, this register is configured only in the initialization section of the code.

movlw b 40000000’ ;all output

movwf TRISA ;program PORTA

movlw br¢0000000° ;no weak pull-ups
movwi WPUA

movlw b* 000000007 ;all PORTC as outputs
movwt TRISC ;program PORTC

The above code configures the direction of the /O resources of PORTA and PORTC.
The bit pattern loaded into the WPUA register configures the weak pull-up resistors
that are available for the PORTA /O pins. PORTC does not have internal weak pull-up
resistors available so if required, weak pull-up resistors on PORTC pins would have to be
external resistors.

mevlw b’ 00000000’ ;all pinsg digital
movwE ANSEL
BANKSEL Bank0 ;back to bank0

The above code will set the input I/O pin resources to gither digital or analog
input. Analog designations are required for those pins assigned to ADC or comparator
resources. Failure to configure this register correctly could result in damage to the device.
Switching the bank back to bank O prepares the memory bank for the main part of the
code which follows device initialization,

It is suggested that this initialization code be cut and pasted into the code that you
author for your application. The bit patterns are then modified {with associated changes
to the comment lines) to configure the device resources as required by the particular
application.

The MCU device resources need to be configured early in the program code as
required to meet the needs of the application. The special features of the device can be
configured using the MPLAB [DE CONFIGURE menu pull-down windows or by using
the config directive in the program code. Using the _ config directive in code is
the preferred method because the program author assumes responsibility through this
directive for the proper configuration and it is not left up to the code user. The special
function registers are configured in the initialization section of the program code. A
generic initialization code was presented in this chapter that could be pasted into the
project code being developed and modified to meet the needs of the specific application.
Binary numbers are used (o represent the bit pattern that is loaded into the SFRs to make
the code more readable and easier to debug,

Review Questions

8.1 Write the code segments required to configure PORTA pins 0, 2, 4 and 5 as digital
outputs and all other port pins as digital inputs with weak pull-up resistors enabled.

8.2 Write the code segments required to configure PORTA pin 0 as an ADC with a clock
frequency of Freq/8 and left hand justified.

8.3 Write the code segments required to disable all weak pull-up resistors.
8.4 Can the direction of a PORT pin be changed after it is initialized in the initialization

section of the code? If the direction can be changed, write the code required to change
the direction of pin 5 of PORTC.

Device Setup 8-9

Delay Subroutines
and

MPLAB Simulator

Timer Resources

Ohjective: To learn the code that can be used to create long delays in software and to use
MPLARB Stmulator to evaluate code in detail.

Reading: PICI6F630/676 Data Sheet, page 74.

Program: Program Files/Ch 9 Program/Delay Subroutines

Video: “Using MPLAB SIM™

Dedicated timer resources are common among many of the MCU devices. In
the PIC16F676 device there are TMRO and TMR1 resources that can be configured to
operate independently of the program code and generate interrupts at specified intervals
to stimutate some sorl of action. Depending on the prescaler configuration for the
individual timmers, the TMRO resource can handle time intervals up to approximately
65 milliseconds (mseconds) and the TMR1 resource can handle time intervals up to
approximately 524 mseconds. These timer resources will be covered in detail in later
chapters. There may be times when you just want to generate a quick delay without
having to configure, or reconfigure the timer resources or you need time delays that far
exceed the time interval of the timer resources. These delays might be needed to flash
an LED on and off at 1-s intervals or generate a pulse for serial communications of a
specified length.

Delay Subroutines

These kinds of delays can be generated by subroutines. Once you build a library of
common delays, these subroutines can be cut and pasted into your code without having
to recreate the subroutines. You will see a section of code identified as delay subroutines
in the code examples used in this text. We will explore these subroutines in this chapter,
also use the MPLAB Simulator to predict the time delay of the subroutines and learn
some programming techniques to fine tune the delays to meet your future application
needs.

Before we begin, review the instruction set table that 1s assigned as reading for this
chapter. Take particular note of the column titled “cycles.” This column lists the number
of instruction cycles required to execute a particular opcode. We are using the on-board
oscillator for the clock source of the PIC16F676 which is set to run at 4 MHz. This
clock frequency generates an instruction ¢ycle frequency of I MHz or a period of 1 uS.
You need 1o keep this period in mind as we explore the delay routines.

Program Files/Ch 9 Program/Belay Subroutines Project

9-2

Chapter 9

Load the Program Files/Ch 9 Program/Delay Subroutines project into MPLAB IDE
and open the program code window. This project contains the delay subroutines that are
used in many of the program examples in the text without the other program code so
that you can focus on the delay roufines. We will begin this study of delay routines by
looking first at a delay subroutine to generate a 1 msecond delay. Scroll down through
the code until you find this subroutine listing:

Delay Subroutine to Generate a I-Millisecond Delay

delaylms

dlylmS

movlw .1468
movwf count
nop

goto S+1

goto S+1

goto S+1
decfsz count, £
goto dlylmS
return

Basic Operation of a Delay Subroutine

The following is a brief description of the basic operation of a delay subroutine. A
dedicated variable called couns is defined earlier in the program code. The variable will
be used to count down the subroutine iterations that are used to generate the delay, as the
name implies. The starting value that is loaded into count is the main control that you
have over the delay interval, the higher the value loaded into count, the greater the delay.
The value in the count variable is decremented down each time through the internal loop
until the value is zero. At that point the delay is completed and the program control is
returned to the main program.

There is an excellent resource within the MPLARB IDF called the MPLAB Sim
Simulator. This simulator allows you to step through a program and monitor specific
registers and variables and also to track the simulated time (based on the number of
instruction cycles) for program execution through a Stopwatch. You will be wsing two
Stopwatch functions — the time function to measure the time required to execute the
delaylms subroutine and the instruction cycle counter funcrion to monitor the namber
of cycles to execute each opcode within the subroutine. You will be using the Wearch
windew to monitor the contents of the variable count as you step through each line of
code. Perform the following steps to setup the MPLAB Simulator.

Delay Subroutines and MPLAB Simulator 9-3

Steps to Setup the MPLAB Simulator

Click on VIEW then WATCH in the menu bar (Figure 9-1). The WATCH window
will be displayed. Click on the down arrow next to the ADD SYMBOL button, scroll
down until you find the VARIABLE LABEL, COUNT, click on COUNT, click on ADD
SYMBOL (Figure 9-2). The WATCH window will contain the variable counr and display
its contents in varicus number formats (Figure 9-3). Next, click on DEBUGGER then
STOPWATCH in the menu bar (Figure 9-4). The STOPWATCH window will appear.
Note that the number of instruction cycles and the time of execution are dispiayed.
There 1s also a ZERO button for resetting the stopwatch { Figure 9-5). You are now set to
explore the delay subroutine in detail.

a5 Deday Subrautines - MPLAN TH 510

|Fie Eda | Vew

| |:. I;E" v Fropect

Lk Fiel

Locals

Tgnory
Fragram Memory
SER Panpherls

Watds

Simulater Trace

Propect Debogger Frogr

Spedal function Registers
1 Msfmery Lisagi Gieioe

Smulator Logic Analyzer

T
eall

waizoisE
call

e bE

dalny3hes

del=yk

]

Figure 9-1

| oz H

[rie edt Wew Proect Detagoer Aregawme Tads Confme
LER g w 7P|

'.'r-nt* W Tk

Debug :ut.pIIf‘ﬁ

|:!-.

wsizlzec
eall
all
sall
Forte
L2iE A0S
exll
| waiczanas
anll
eall
call

Fedd HH E‘ Lo ‘ﬂ Ak ket

l[[HT‘]iF‘(’TED'r"

Updare | Sfdrens

| 2ymbal tame [waiue |

| Hex chima.lj

JimeTy

Char

Figure 2-2

\[Ezssea] Jrocomy <1 ass lm——“

9-4 Chapter 9

Updaze | adaress Symiml Hane | Velue | Bex |[ecimel J 2in | Chne
: ouT U0 OudD %
Mz Fdi View FProject | Debuoger Prograeme Took
v L Selert Tool >
B =
I | 5 Cledr Meswiey >
5
Hak =
Step Inko EF
| en]l StEpOver =&
Step Out
aal R
cal Reset g =13 x|
1 O8] Ty)
1 Erealoontz. .. FZ T i e 5
Stap Toksl Simuialed
T |-| | Swnch | Instrustion Cytles o 0
reEERE ""c“ Complex Breakoairts [
a1 Dmulus ¥ E I;Tlme {uSecs ! C 'JEIEIE'EIII 7000000 |
a1 Profie > ! — e
e : [_—
got Cloar Cods Conerage | F’rocesaori’requenr:y [MHZ] l_ 4000000 I
waic30ies Rafresh PM | e by L= & |
oal —
1AL EESAnS Saltrge... Figure 9-4

Figure 9-3

Figure 9-5

Delay Subroutine in Detail

Scroll to the main program and set a break point at the line

call delaylmS. Break points are locations that you identify in
the code where program execution will stop when the program
is run in the simulator. The break points allow you to view the
imaia progran contents of variables and registers and the Stopwatch at that point
- in time of the program execution, which you will do in just a few
® e moments. You can have numerous break points set at strategic
gote wain fda it again locations within the code. A break point is toggled on or off
bbb bbb b bt b bk by double clicking the line of code. The red-bolded B on your
Figure 9-6 screen will indicate the location of the break point (Figure 9-6).

In a similar manner, set a
break point at the end of the
delaylms subroutine at the
return opcode. You have a
break point set at the point
where the delaylmS touiine
is called in the main program
and another break point at
the point when the program
execution is returned to the
main program once the delay
subroutine is completed.

Build and then run the
program,. The program will
execute up to the first break
point and then stop. The
Stopwaich indicates that
39 uS have transpired to this
point in the program and
39 instruction cycles were
clocked (remember that the
clock speed is 4 MHz which
gives a 1 .S instruction clock
period) (Figure 9-7).

Let’s see how long it
takes to execute the delaylms subroutine. Zero out the Stopwateh by clicking on the
ZERO button. Press the RUN button, and the program will continue execution and stop at
the next break point (the return opcode at the end of the subroutine, Figure 9-8).
Notice the instruction cycles required are 998 and it took 998 uS to complete the
subroutine up to this point. If you now press the F7 key to take a single step through the
program and execute the return opcode, the program execution returns to the main
program, the instruction cycles advance 2 cycles to 1000 and the Stopwatch advances to
1000 uS, or 1 msecond, the desired time interval. You will notice that it took
2 instruction cycles to execute the return opcode. We can use the specific number of
instruction cycles to fine tune our delay routines as will be illustrated below.

Now that we have seen the overall time required to execute the delay routine, let’s
now take a closer look within the routine itself. The delay subroutine has two parts, the
first part sets up the delay count variable, and the second part is an internal loop that
decrements the count variable to create the delay. This is the code for the intemal loop:

Figure 9-8

Delay Subroutines and MPLAB Simulator 9-5

dlylm8

Table 8-1 - Opcodes and
Number of Instruction

Cycles Needed
Opcode | Inst.
Cycles
call 2
moviw 1
moviw 1
nop 1
goto 2
decisz 1({2)
return 2

i gate
daalsz
P
@),
idulavand

uves delaviz$ to oar b vary socuzsze 5 mS delav

3+l
341

221
count, £
drylzs

goto $+1
decfsz count, £
goto dlylmS

You can predict the time required to go through this loop one time by looking
at the instruction cycle count. Table 9-1 is an extract of the instruction set for the
PIC16F676 and lists the opcode and the number of instruction cycles to execute
individual opcodes. The goto opcode 1s a 2-cycle instruction, the decfsz is a
1-cycle instruction. The total number of instruction cycles required to execute the
internal loop is therefore 5 cycles (and at 1 uS per cycle, 5uS). The count variable
is loaded with 198 when the delay is set up, so the total time to complete the 198
internal loops is 990 uS. Let’s take a look at this section of the delay subroutine and
verify this with the simulator.

First, clear the previcus break points by double clicking on the lines of code
with the break points. Next scroll down inte the delaylmS subroutine and set
a break point on the goto %+1 line of code. Build and run the program and the
program execution will stop at the break point. Zero the Stopwatch. Finally, step

through the program using the F7 key and take note of the instruction cycle counter.
The goto $+1 instruction requires 2 cycles, the decfsz count, f instruction requires [
additional cycle (3), and the gote dlylmS instruction requires 2 more cycles (total of 5).
From this test, it should take a total of 990 pS to complete all 198 iterations of the
internal loop. Do the following to check this predication. Do not clear the Stopwatch.
Clear the break point on the goto $+1 line of code and set a new break point on the
return opcode. When you click on RUN, the internal loop will be executed until the
count variable is decremented
to zero and the decfgz
opcode causes a skip to the
next opcode return (Fig-
ure 9-9). Notice that the
number of instruction cycles,
and therefore time, ts only
989, not as predicted 990.
What happened to the two

el
B

Figure 9-9

9-6

Chapter 9

cycles? The missing cycles
are due to the final execution
of the decfsz opcode.
When the count variable is zero, the decfsz opcode executes a 2-cycle instruction to
skip the next line of code which is the gotc opcode. So during the last iteration of the
internal loop, there were only 4, not 5, cycles required (the goto opcode is not executed
reducing the cycles by 2, but | additional cycle was added by the decfsz opcode.) So
even though the time required to complete code segments can be predicted by looking at
the instruction cycles required for each line of code, things can get a litile complicated
when branching decisions are involved. This requires the use of some techniques to pad
the code to get the desired delay. In this case, we need to add an additional 11 instruction
cycles to get the desired delay of 1 msecond.

The whole delay1m$ subroutine instruction cycle accounting is listed in
Table 9-2. The call opcode that jurmps the program execution to the delay subroutine
uses 2 cycles. The setup section of the code will add 7 instruction cycles, and the
return opcode that ends the subroutine adds the final 2 required instruction cycles to
give a total of 1000 cycles, 1000 uS, or 1 msecond. Confirm these numbers by setting
a break point at the call delaylm$ instruction in the main program and stepping

Table 9-2 — Subroutine Instruction Cycle Accounting

Opcode Opcode (loop) Inst. Cycles Cycle Subtotal Running
Total
call delayimS 2 2 2
delayimS
movlw 198 1 1 3
movwi count 1 2 4
nop 1 3 5
goto $+1 2 5 7
| _goto $+1 2 7 9
dlyimS
goto $+1 2 2
decfsz count, f 1(2) 3 |
goto dly1mS 2 5
(5*198)-1=989 998
return 2 1000

through the program from that point.

You may not be able to create the required pad in your code by manipulating
variables. There were two techmiques used in this subroutine to added instraction cycles
without affecting registers or variables, in other words, opcodes that kill time. The
first was the nop opcode. This T-cycle opcode actually performs no operation; it just
expends 1 instruction cycle. The second was the gotoe S$+1 instruction. The goto
opcode is a 2-cycle instruction. The $ is an assembler reference to the program counter
— the +1 simply adds one memory address location to the current program counter
represented by the $. The result of this goto opcode then is that the program counter
simply advances to the next instruction. The advantage of this programming technique 1s
that it takes two instruction cycles, but requires only one opcode (one word of program
memory) to accomplish this delay. You could have used two nop opcodes (two words
of program memory}, but that would have not been an efficient use of program memory.
Keep this technique of using the goto $+# o advance the program counter in mind. It
might come in useful later in your programming experience, particularly when you want
to increment through a data table.

So far you have looked at programming code to create a very precise delay of 1
msecond. The precision of this delay is only limited by the accuracy of the device clock.
You can now use the basic delay interval of 1 msecond to create delays that are multiples
of 1 msecond by making sequential calls tothe delaylmS subroutine. There are
exarmples of this technique in the program code. The actual development of these more
lengthy delays is not that simple. You will need to compensate for the code overhead
to make multiple calls to subroutines by “tweaking” your code with delay padding as
menticned above.

The delay routine that you have studied used one 8-bit counter to control the
number of iterations of the internal loop. More lengthy delays can be achieved by
nesting counters. By adding counter variables you can create delays based on increments
of 8-bits (16, 32, 64 and so on) to create some very long delays. This is actually the
difference between the TMRO timer resource (8-bit counter) and the TMR1 timer resource
(16-bit counter).

Creating Your Own Unique Delay Subroutine

How do you create your own unique delay subroutine? Start out first by writing the

Delay Subroutines and MPLAB Simulator 9-7

Summary

internal loop code and calculating the number of instruction cy¢les or the time required
to execute a single loop. Divide that time into the total delay time required to calculate
the value that needs to be loaded into the loop counter variable to the nearest integer.
Write the delay setup section of the code and calculate the number of instruction cycles
required for this overhead section of the code. Don’t forget 1o include the number of
cycles required to call and return from the subroutine. Finally, add padding code to
tweak the code to obtain the desired delay.

As you create your own library of delay routines, it is good practice to keep them
handy for use in other programs, just as you will see illustrated in the programs in this
text. Simply cut and paste the subroutines in your new code. Keep in mind, that in the
majority of your applications you will have plenty of memory space avatlable for your
programs, however, for larger programs you may have to trim the excess, unused delay
subroutines from your code listing to get it all to fit in available memory space.

There are timer resources available on most MCU devices that operate
independently of your program code and can generate interrupts at specific time
intervals to jump the program to interrupt service routines to accomplish required tasks.
There are times when longer delays are required for an application and these delays can
be accomplished through delay subroutines designed for the purpose. A good program
habit is to develop a library of delay routines that can be cut and pasted into other code
as required. The core of a delay subroutine is an mternal loop that is accomplished a set
number of times based on the starting value in a loop counter variable. The time required
to accomplish one internal loop is used as the base line time that is multiplied by the
value Toaded into the loop counter variable to get an approximation of the overall delay.
Subroutine setup and exit time is added to the loop time and padding instructions are
added to the code to tweak the final delay interval. Standardized delays, 1 msecond for
example, can be added ro create more length delays. Nested loop counter variables also
can be used to create longer delays. The MPLAB Simulator is a powerful tool that can be
used to determine the number of instruction cycles required to execute the delay code.
The number of instruction cycles can be translated into the actual time delay by knowing
the period of the device system clock. The accuracy of the delay is therefore dependent
on the accuracy of the system clock oscillator.

Review Questions

9-8

9.1 Serial communications ts based on precise timing of pulse widths. The pulse widths can be

calculated by the formula time =

. For 4800 baud, the time interval is .000208 seconds.

G

Write a delay subroutine to generate bit pulses of this duratjon and test your code using the

MPLAB Simulator tool.

Chapter 9

Basic
Input / Output

Objective: To learn how to configure and use the two PIC16F676 /O Port pins to send (output)
logical states te specific port pins and/or to detect (input) logical states on specific port pins.
Reading: PICI6F630/676 Data Sheet, pages 19-21, 27.

Program: Program Files/Ch 10 Program/On Off Button

Configuring Input/Qutput (1/0) pins for Digital States

Micracontrollers interact with the outside world though collections of pins that
make up input/owtput (I/O) ports. In the case of the PICI6F476, there are two 1/O ports,
PORTA and PORTC. Other MCUs have more or less /O ports. The individual pins can
be configured to interact with the outside world through digital iogic states (on or off,
high or low) or through analog voltages (any voltage level between reference extreme
voltages). In this chapter on basic input/output, we will examine I/O pins configured for
digital states.

Before the ports can be used, they must be configured for either input or output
and configured for analog or digital voltages. The individual pins within a port can be
configured to output logical states {either high, or +5 V, or low, or O V), or they can be
configured to sense the logical states on individual pins and return a valoe of [(for high
or +5 V) or O (for low or 0 V). The port configuration is controlled by specific Special
Function Registers (SFRs) that are addressed in the device initialization section of the
program code. There are also instances when the configuration of a port or individual
pins needs to be changed in the body of the program. To do so, the same SFRs are
changed during program execution. :

During this discussion and throughout this text, you need to make the distinction
between the resource identifier as it is listed in the documentation, such as the PORTA
pint RAO or PORTA, O and the physical pin of the integrated circuit package that is
used by the resource. For instance, the /O pins of PORTA are referred mnemonically
in the device documentation as RAO through RAS. In the actual program to refer to the
RAQ I/O pin of PORTA, you will see PORTA, 0. The actual physical IC pin number
for PORTA., 0 or RAO is pin number 13. So for programming purposes you will use the
/O port pin number, for study and documentation you will use the mnemonics, and for
project wiring, you will use the physical IC pin number.

Port setup — Special Function Registers

Port setup. There are four SFRs that need to be set up to configure the I/O ports:
ANSEL, TRISA, TRISC and WPUA.

Bankl

ANSEL Analog Select Register

ANST

ANSO

ANSS5

ANS4 ANS3 ANS2 ANSI ANSO

RC3

C2

RCI RCO RAZ RAD RAl RAL

10-2

Chapter 10

The Analog Select Register (ANSEL) assigns individual I/O pins to accept either
analog or digital voltage levers. Not all the I/O pins need this kind of flexibility because
not all pins can be configured with comparator or ADC resources. If the individual bit
within the ANSEL register is SET, then the associated pin is assigned for analog input
use. If the individual bit within the ANSEL register is CLEARED, then the associated
pin ts assigned for digital input use. When a pin is assigned for analog input, other
digital input circuitry resources such as weak-pull-up resistors and interrupt-on-change
capabilities are automatically disabled.

Bank 1 TRISA PORTA Tri-state Register
X X TRISAS TRISA4 | TRISA3 | TRISAZ | TRISAL | TRISAO
Unimplemented Unimplemented RAS Ra4d RA3 RAZ2 RAI RAD
Bank 1 u TRISC PORTC Tri-state Register
X X TRISCS TRISC4 | TRISC3 | TRISC2 | TRISCI TRISCO
Unimplemented Unimplemented RC3 RC4+ RC3 RC2 [rEC1 RCO
The Tristate Registers (TRISA and TRISC) are used to configure the appropriate
port pin as either an input or output pin. There is a Tristate Register for each port and
indicated by the last letter of the mnemonic. SETTING the appropriate bit within the
TRIS register will make the I/O pin an input pin, conversely CLEARING the bit will
make the pin an output pin.
Bank 1 WPUA Weak Puli-up Register
X X WPUAS WPUA4 [X WPUA2 WPUAL WPUAQ
|_Umimplemented Unimplemented, RAS RA4 Unimplemznied RAZ RA] RAQ]

The last controlling register for port setup is the Weak Pull-up Register, (WPUA)
There are weak pull-up resistors tied to all the PORTA I/O pins except RA3. This i3
because RA3 is used for multiple purposes that are not consistent with an internal weak
pull-up resistor. If a weak pull-up resistor is required for a particular application on
RA3, this resistor would have to be added externally to the circuit. The purpose of the
weak pull-up resistors is to provide a current source when the I/O pin is configured as
an input pin which places the pin in the high impedance state. There are no weak pull-
up resistors internally attached to PORTC 1/O pin and therefore there is no associated
WPUA-like register for PORTC. As with pin RA3, or PORTA, 3, weak pull-up resistors
would have to be externally connected to PORTC KO pins if needed. To configure the
weak pull-up resistors, the appropriate WPUA bit would be SET. Additionally, the
PORTA Pull-up Enable bit (RAPU) in the Option Register (OPTION REG) would have to
be CLEARED. This bit enables all the individually enabled weak pull-up resistors (See
Chapter 6). Note that the weak pull-up resistors are automatically disabled if an I/O pin
15 configured as an output (TRISA associated bit CLEARED) regardless of the WPUA
bit or global RAPU bit configuration.

Example Code Segments

Let’s take a look as some example code segments that would be included in the
Initialization section of the program code to configure the ports. In this first example we
want to configure all the port I/O pins as outputs to drive a series of light emutting diodes
(LEDs).

Basic Input/Ouput 10-3

10-4

BANKSEL
movlw

movwi
movliw

movwi
movlw

movwi
moviw
movwi

BANKSEL

clrf
clrf
crf

clrw

movwi
movwi
movwi

Chapter 10

Bankl ;selects BANK1

b'10000000° iload w reg with configuration bits
;for the OPTION REG, in this case
;jdisable weak pull-ups

OPTICN_REG jput w reg inte option register

b’ 00000000 ;load w reg with PORTA I/0 pin
;eonfiguration (0 = output, 1 = input)

TRISA ;configure register for PORTA

b’ 000000007 ;load w reg with PORTC 1/0
;configuration {could also use clear)

TRISC ;eonfigure register for PORTC

b’ 00000000’ ;load w reg with analog or digital pin

;assignments (O=digital, l=analocg),
;here 21l digital

ANSEL ;econfiqure register for all digital I/O
;pins

Bank(;back to BANKO for rest of the
;program

This program code is not the most efficient use of program memory space and
15 listed here for illustration. The programming examples used in this text are not
necessarily the most efficient and are focused on instruction. In this case, these
mstructions would be more efficient:

TRISA ;sets all bits to zero
TRISC ;sets all bits to zero
ANSEL ;sets all bits to zero

The clrf opcode sets all the bits in the target register to zero. Another alternative
approach is: :

;load w reg with all zeros

TRISA ;sets all bits to zero
TRISC ;eets all hits to zero
ANSEL ;sets all bits to zerc

In this code, the w-register is CLEARED and then that value is assigned to each of
the following registers to CLEAR each. The first example however is preferred if you
are going to cut and paste code between programs.

In the next example of port setup code, let’s modify the first code so that pins RA2
and RA 4 (PORTA, 2 and PORTA, 4) and RC0O (PORTC, 0) are inputs, all the other port
pins are outputs (except of course RA3, PORTA, 3 which is always an input pin).

BANKSEL
moviw

movwi
movlw

movwf
movlw

movwi
movliw

movwi

movlw

movwi

BANKSEL

Bankl
bfQ000CGO00"

OPTION_REG
b 00010100’

TRISA
brogoooacl”

TRISC
bL’000101007

WPUA
br00000000°
ANSEL

Bank0

;selects BANK1

;load w reg with configuration bits
;for the OPTION REG, in this case
;disable weak pull-ups

;put w reg into option register

;load w reg with PORTA I/O pin
;jeonfiguration (0 = output, 1 = input}
;RA2 and RA4 input, all others

;output

;econfigure register for PORTA

;load w reqg with PORTC I/0

;RCO input, all others output
;econfigure register for PORTC

;weak pull-ups enabled on RAZ and
;RA4, (l=enabled, 0O=disabled}
;enabling weak pull-ups

;locad w reg with analog or digitzl pin
;assignments (0=digital, l=analog),
;here all digital

;configure register for all digital I/O
;pins

;pack to BANKO for rest of the

; program

The code above that 1s bold is changed or added. The changes included clearing

the RAPU bit of the OPTION_REG to enable weak pull-up resistors, SETTING the
appropriate bits for input in the TRISA and TRISC registers, and adding code lines
to enable weak pull-up resistors for pins RA2 and RA4 (remember that there are no

internal weak pull-ups on PORTC and therefore, if required, those
to be added to the circuit).
Once the ports have been configured using code contained in the Initialize section

of the program code, the individual port I/O pins can be accessed by SETTING or
CLEARING the pins for output or reading the individual pins to sense the applied
voltage for input.

Bank 0 PORTA - PORTA Register

X X RAS RA4 RA3 RA2 RAI1 RAD
Unimoplemented Unimplemented Pin - 2 Pin-3 Pin -4 Pin-11 Pinl2 Pio-13

Bank 0 PORTC - PORTC Register

X X RC5 RC4 RC3 RC2 RC1 RCO

Unimplemented Unimplerented Pin -5 Pin -6 Pin -7 Pin -§ Pin-9 Pin - 10

Basic Input/Ouput

resistors would have

10-5

10-6

This first program segment simply turns on and off LEDs attached to RAQ
(PORTA, 0) and RCI (PORTC, 1). It is assumed that the ports are initialized as outputs.

becf PORTA, 0 :start with LED off
ket PORTC, 1 ;start with LED off
pregram loop ;this is a label that is used for goto

;and call statements to identify a
;location within the program code.

bsf PORTA, 0 ;turns on LED by setting pin (high or
;5 V on the pin)

bst PORTC,1

call waitlsec ;calls a delay routine that delays 1
;second, not discussed in this
;chapter.

bef PORTA, O ;turns off LED by clearing pin (low
;or 0 V on the pin)

bef PORTC, 1

call waitlsec

goto program loop ;jumps back to the beginning to do it

Chapter 10

;again

Let’s go through this program segment. The first two bcf opcodes make sure
the LEDs are turned off. The program_loop statement is called a label that identifies a
location within the program code to which the got.o opcode can jump. This label begins
a program segment that will be accomplished over and over again (furing program
execution. The bst opcode SETS the addressed pin and applies 5 V to that pin. This
apphied current turns on the LED that is attached (though a current limiting resistor).
The call opcode calls a subroutine (another code segment that is not defined here,
but would be listed in another section of the program code) labeled waitlsec thatis
designed to delay the program | second. The result is that the LEDs will be turned on,
then remain on for 1 second before other actions are taken within the code. After this
delay of 1 second, the bcf opcode will clear the addressed pins and remove the 5 V
which turns off the LEDs. A call again to the waitlsac subroutine causes the LEDs
to be off for 1 second. The final goto opcode loops the program back to the program
location labeled program _loop to start the process over again. The result is that the
LEDs will flash on and off at | second intervals. This will continue until the power is
turned off.

The following program segment will build upon the LED on and off segment above
by assigning a pin as an input and sensing that pin causing a reaction in response to
some input. This segment assumes that RAO and RC! are outputs and RA2 is an input

7805
REG
LI?O\Oi n Out 3 _L L Vdd Vss 14
= =S 0.01 : 2 3
oV 2 UF: ~ — RA5 RAQ |—
7l J — 3 3 12
77 EO O——RA4 9] RAT|—
2{ras F oRw 11
w0 2res & reol
8l rea ey L
"Hrca rez |-
ARRLO308 ’//
Figure 10-1

bcf
bct

with a weak pull-up resistor enabled on that pin. There is a2 momentary-on push-button
switch connected between RA2 and ground. The weak pull-up attached to RA2 will
keep the voltage on that pin at 5 V until the push button is pressed which will short RA2
to ground until it is released.

PORTA, O
PORTC, 1

program_loop

btfsc

goto

bsf
bst
call
bcf
bef

call
goto

PORTA, 2

program_ loop

PORTA, O
PORTC, 1
waitlsec
PORTRA, O
PORTC, 1

waltlsec
program_loop

;start with LED off
;start with LED off

;this is a label that is used for gote
;and call statements to identify a
;location within the program code.
;senses the voltage on PORTA, 2. If
ithe voltage is 0 V, this command
;returns a CLEAR condition and

;the next command is skipped. If the
;voltage is 5 V, this command

;returns a SET conditcion and the

;next command is axecuted.

;if the button is not pressed, jump to
;program_loop and continue to do so
;juntil the button is pressed.

;If the button is pressed the code
;below is executed and the LEDS

;will flash.

jturns on LED by setting pin (high or
;5 Vo on the pin)

;jcalls a delay routine that delays 1
;second, not discussed in this
;jchapter.

;turns off LED by clearing pin {low
;or 0 V on the pin}

;jumps back to the beginning to do it
;again

The added code statements above are in bold. The added bt £sc opcode looks at
the voltage on pin RA2. If that voltage is 5 V, the instruction returns a SET state on that

pin and the next opcode is executed

to loop the program back to the label

program_loop. If the voltage is 0
V, the instruction retuns a CLEAR

15 & B o

]
"]
(L
(']
[

]
]
n
N ou
n

condition on that pin and the next
mstruction is skipped causing the
program to continue to flash the LEDs
before jumping back to the program_
lcop label. The result is that when the
| push button is pressed, the LEDs will
flash at 1-second intervals (as long as
the button is pressed), when the button
1s released, the program will simoply
loop and wait for a button press.

Putting it all together, wire up
your proto-typing board with the

A A WA

circuit in Figure 10-1 and shown in

Figure 10-2

Figure 10-2. Then load the
Basic Input/Ouput 10-7

Program Files/CH 10 Program/On Off Button project into MPLAB IDE. While
you read the following program description, refer to the code as contained in the On Off
Button.asm file and displayed in the MPLAB /DE editor window.

The code below is located in the Initialize section of the program and configures
PORTA, 4 as an input with the weak pull-up resistor enabled and PORTC., 4 as an ocutput:

BANKSEL Bankl ; BANK1

moviw b’ 00000000 ;enabling weak pull-ups

movwE OPTION REG ;put w reg into option register
movlw b’00010000° ;RA4 as input, all others output
movwf TRISA ;program PORTA

movlw b’ 006010000 ;jenable weak pull-up on RA4
movwt WPUA

movlw b’ 00000000 ;all PORTC as cutputs

novwi TRISC ;program PORTC

movlw L’ 00000000° ;all pins digital

movwf ANSEL

BANKSEL Bank0 ;back to bank0

main
btfsc
goto

bsf
call
bef
call
goto

Summary

10-8

Chapter 10

The code below is located in the main section of the program and senses the voltage on
PORTA, 4 waiting for you to press the button. Once you press the button to short PORTA,
4 to ground, the program continues to flash the LED. Release the button and the LED is
off and the program waits for the next button press.

PORTA, 4 ;check if button presssd (0)
main ;1f 0 then skip this gote
PORTC, 4 ;turn on LED tied to RC4
waitlsec ;wait for 1 second

PORTC, 4 ;turn it off LED

waitlsec ;wait another second

main ;de it again

If you scroll down to where the delay routine code below is listed, you will find the
code for the wait lsec subroutine that is called by the main program. The waitlsec
subroutine is actually made up of additional calls to other subroutines. The waitlsec
subroutine calls the wait300 mS subroutine three times. The wait300 mS subroutine
will cause a delay of 300 milliseconds for each call. Then the waitisec subroutine ends
with a call 10 a wait100mS subroutine that causes a delay of 100 milliseconds. The
sum of these delays adds up to ! second.

This chapter has focused on the setup and the basic use of the /O port pins of the
MCU. The setup of the ports in the program Initialization section included using the
ANSEL register to dictate if a port pin is configured for digital or analog ievel voltages,
the TRIS registers to dictate if a port pin resource is an input or an output and the WPUA
and OPTION_REQG registers to enable weak pull-up resistors mternally attached to
PORTA resources. We learned a hardware nuance that the weak pull-up resistors are
disabled on an associated pin when that pin is configured as an output. Once the [/O
resources are configured for digital input/output you learned that the bsf and bef
opcodes will either SET or CLEAR the oprand pin. Finally you learned that the state of
an input pin can be sensed and appropriate action taken by the program. For instance

bt fsc will sense the state on the appropriale pin and if the state is CLEAR, the next
statement is skipped, if it is SET, the next instruction is executed. As an example:

btfsc PCRTA, 1
goto somewhere
continue with_program

Review Questions

10.1 List the code that would be required to configure the I/O resources of the MCU so
that RAO, RA3, RA4, RC1 and RC2 are digital inputs, the rest of the pins are digital
outputs and Weak pull-up resistors are enabled on the PORTA input pins.

10.2 List the I/O restrictions on RA3.

10.3 You have a pin in PORTA configured as an input with the weak pull-up resistor
enabled for that pin. Inside the main program, you would like to momentarily change
the direction of that pin to an output. What command(s) would you need to include to
do the switching from input to output and back again?

10.4 Write a command line that is an alternative to:
movlw Lro00o0o000! ~
movwiE PORTA

10.5 The following command segment will toggle the status on pin PORTA, 4, which
means 1f the pin is SET, the program will CLEAR the pin, and vice versa:

btsc PORTA, 4 .
bef PORTA, 4
btfss PORTE, 4
bsf PORTA, 4

continue with pregram

Write a tighter {more efficient code) that will accomplish the same task. (Hint: look
at the xorwf ¢command.)

10.6 Switches are notorious for contact bouncing, which means that when the contacts
within a switch are opened or closed, there is not an instantaneous make or break of
the switch contacts. When the switch closure or opening is sampled fast enough with a
computer, multiple closures or openings could be detected with potentially disastrous
results. Write a code segment that would belp to alleviate the switch contact bounce
issue.

10.7 Write out the default configuration for the ANSEL, TRISA, TRISC, OPTION_REG,
and WPUA registers. Under what resource configuration conditions would the default
configurations of these registers be okay, meaning you would not have to address these
registers in the Initialization segrnent of your program? Would it be advisable to use
the default configuration instead of deliberately configuring these registers, why or
why not?

10.8 Adjust the code that vou used during this chapter to flash an LED when the switch

was pressed so that two LLEDs flash but alternately (when one LED is on, the other is
off and vice versa).

Basic Input/Ouput 10-9

10.9 Adjust the same code so that the LED is flashing when the swiich is open and stops
flashing when the swikch is closed.

10.19 Adjust the same code to make a stop light simulation. In this simulation, the red
LED is on until the switch is pressed. Then like the operation of a stop light, there is a
pause, then the red light goes out and the green LED comes on for a short period. After
the green period, the yellow LED comes on, the green goes out for a short period.
Finally, the red LED is turned on and the yellow is turned off and the program awaits
for the next switch press (the car).

10-10 Chapter 10

Analog to
Digital Converter

Objective: To learn how to configure and use the eight PIC16F676 analog to digital converter
(ADC) resources to sense variable voltages applied to an I/O pin and display the digital value
that 1s proportional to the applied voltage relative to a reference voltage.

Reading: PICI6F630/676 Data Sheet, pages 43-48.
Program: Program Files/Ch 11 Program/ADC

The Analog to Digital Converter (ADC) — Powerful MCU Resource

The most powerful resources contained in MCUSs are analog to digital converters
{ADC). An analog to digital converter is a circuit that takes an instantaneous sample of
an applied voltage, compares the level of the sensed voltage to a reference voltage and
using a mathematical algorithm (commonly a binary search algorithm is used) returns
a digital value that represents the proportional relationship between the two voltages.
ADCs are typically used with peripheral sensors that measure an environmental factor
and report that measurernent as a voltage that 1n turn is sensed by an MCU to take some
action. For mstance, the sensor might be a temperature sensor, one of the most common
sensors. The termperature sensor measures the temperatire of the device that is being
monitored. The value of the temperature 1s returned as some calibrated voltage level
that is proportional to the degrees of temperature. The MCU in turn would monitor the
output voltage of the temperature sensor using an ADC and waits for a specified voltage
level before taking some action, for instance, wming off or on a hedting element.

ADC Level of Accuracy

ADC Limitations

11-2

Chapter 11

The level of accuracy for measuring this relative difference between the two voltages
is indicated by the bit resolution of the ADC. In the specific case of the PIC16F676, there
are 8 10-bit ADCs available. Ten-bit resolution means that the resolution of the ADC
could detect 1024 incremental steps of the reference voltage (b" 1111111 = 1023
decimal). If the reference voltage is 5 V, then the ADC could resolve voltage changes of
49 mV [(1/1023) x 5 V = 4.9 mV]. This level of resolution does not take into account
the influences of various kinds of noise injected into the system from electronics and
conversion schemes that in reality reduce the practical resolution (a discussion beyond
the scope of this text, but the limitation that needs to be considered in the most stringent
applications). Continving with this discussion, if the voltage being measured by the ADC
is 3.9 V and the reference voltage is 5 V, it would be anticipated that the ADC would return
a value of 798, [(3.9/5) x 1023] = 798). The MCU would be programmed to take some
action based on this ADC value.

There are some ADC Jimitations to consider. It takes a finite amount of time to
sense the voltage being measured before the conversion can be accomplished. There
actually is a small value capacitor that is charged by the applied current and enough ime
needs to be allowed for this capacitor to charge up and reach the voltage level being
measured. Additionally, it takes some time for the MCU to perform the ADC algorithm.
The amount of time required depends on the algorithm scheme and the clock speed of
the particular device. [n the more critical, high speed applications, the circuit designer
will have to study the specifications of the MCU device that is going to be used to take
these limitations into consideration.

ADC setup

Special Function

Before you set up the ADC resources for use you will need to do some preplanning.
First, you will need to define what reference voltage you will use. You have two
choices -— use the internal V44 (5 V) voltage or some external variable reference voltage
(up to the value of V) that is applied to /O port pin RA1. Using V ,, as your reference

voltage may be limiting, but many of the external sensors that you will be using use

Va4 as the reference. Using an external veltage will give you a lot of flexibility and

may improve the measurement accuracy but at the expense of tying up one of the I/O
resources for the purpose. In the program example of this chapter, you will be using Vg4
as the reference voltage.

Second, you will need to determine which I/O port pins will be used for ADC. You
can assign up to 8 pins to ADC resources, but only one ADC measurement can be made
at a time since each of the ADC-assigned pins (called channels} share some common
circuifry.

Third, you will need to research the mimrumn conversion time required for the
device and determine the appropriate clock speed for the ADC to meet that minimum
time. The PICI6F676 requires 11 clock cycles to complete the conversion algorithm and
1.6pS according to the documentation. There are operating frequencies for the device
and various V, voltage levels possible. All interact to affect the ADC performance.
Fortunafely there is a selection chart that provides some guidance on selecting the
appropriate ADC clock frequency on page 44 of the device documentation. In the
exercise of this text, you will be using the internal device clock that runs at a frequency
of 4 MHz. Cross referencing that clock frequency with the minimum comnversion time
required of 1.6 uS returns an ADC to system clock ratio of 1 to 8, so plan on using a bit
setting in the ADCON] register to set the ADC conversion clock to Fosc/8 (more on this
will follow). :

Finally, you will need to determine the justification of the ADC output data. The
ADCs on the PICL6F676 are 10-bit resources which means that the ADC value will
require 2-bytes to hold the output value, but only 10 of the 16 available bits. This
means that 6 bits go unused. Often, you will want to shuft bits out of the registers that
hold the ADC output values, or you will want to trancate either the upper or lower bits
depending on the application. This will determine if you want the ADC output value to
be right- ot left-hand justified within the two ADC output registers. In the exercise of
this text, you will be using right-hand justified data in the ADC output registers meaning
the lower byte of the 10-bit ADC output will be held in the lower ADC output register
(ADRESL) and the remaining upper 2-bits will be held in the upper ADC output register
(ADRESH).

Registers to Be Configured to Use the ADC Resources

There are three SFRs that need to be configured to use the ADC resources of the
16F676. These registers are configured 1n the Initialization section of the program.

ADCONGO — The A/D Control Register

The state of the ADFM bit within ADCONO determines the ADC output format.
The 10-bit cutput of the ADC is placed in two registers, the high byte in ADRESH and
the low byte in ADRESL. If ADCONO, ADFM is SET, the output is right justified with
the lower 8-bits of the ADC output placed in ADRESL and the upper 2-bits placed in
the lower portion of the ADRESH. If ADCONO, ADFM is CLEARED, the result is
left justified with the high 8-bits of the ADC output placed in ADRESH and the lower
2-bits placed in the upper portion of ADRESL. The voltage reference used by the ADC

Analog to Digital Converter 11-3

is determined by the VCFG bit. If ADCONOQ, VCFG is SET, the reference voltage is an
external voliage applied to pin RA1, if ADCONO, VCFG is CLEARED, V , is used as
the reference voltage. The ADC channel setting is determined by configuring the CHS2,
CHS1, and CHSO bits as appropriate for the channel desired. These bits along with

the next bit, GO/DONE, are frequently changed during the main part of the program.
The GO/DONE bit of the ADCONO register is used to start the ADC conversion by
SETTING this bit in software. Upon the completion of the ADC conversion, this bit

is CLEARED by the PIC16F676 hardware. You can pole this bit during the ADC
conversion to check to see if the conversion is in progress or completed. The final bit,
ADON, is SET to turn on the ADC module or CLEARED to turn off the ADC module.
In the off state, the module draws no current.

Bank 0 ADCONO A/D Control Register

ADFM VCFG X CHS?2 CHS1I CHS0 GO/DONE ADON
A/D Resull Voltage Unimplemented Analog Channel Analog Channe] Analog Channel A/D Conversion A/D Off
Formed Selec bit Reference bil Select bil Select bil Select byt STATS bit Off hit

ADCONI — The A/D Control Register 1

This register has only three bits implemented. The ADCS2, ADCS1, and ADCS0
bits are used to determine the ADC conversion clock rate. These bits are SET or
CLEARED as outlined in the device documentation for the appropuiate clock rate. The

examples in this text will use a conversion clock rate of Fosc/8 which equals a bit pattern
of b’001".

Bank 1 ADCONI Control Register 1
X ADCS2 ADCS! ADCS0 X X X . X
Unimplemeated AD AMD A/D Unimplemented Linimplemented Unimpleraented Unimpteraented
Coaversion Conversion Conversion
Clock Select Clock Select Clock Select
bits | bits bits

ANSEL — The Analog Select Register

You have seen the final ADC associated register before. The ANSEL register
assigns individual /O pins to accept either analog or digital voltage levers. Because the
ADC will be measuring analog voltages, the pin resource associated with the ADC need
to be configured for analog input by SETTING the appropriate bit in ANSEL.

| Bank 1 ANSEL Analog Select Register .
ANS7 | ANS6 ANSS ANS4 ANS3 ANS2 ANSI ANSO
RC3 RC2 RCI RCO | Ra4t RAZ RAI RAU

Code to Configure the ADC Resources

11-4

Chapter 11

Now let’s take a look at some code that would be placed in the Tminalize section
of the program to configure the ADC resources. The following examples are extracted
from the example prograrn that you will use later in this chapter (Program Files/Ch 11
Program/ADC). The following lines will configure the PIC16F676 so that RC0 is an
analog input assigned to the ADC, right justified and V4 as the reference voltage.

movlw br0o0000111" ;non inverted, comp with output

movwE CMCON

moviw b’ 0CcQ00000" ;globals, peripherals, RA2 int, c¢lear INTF

movwi INTCON

moviw br10010001° ;right justified, vdd ref RCO has ADC,
;BADC stopped, ADC resource connected

movwE ADCONO

BANKSEL Bankl ;g0 to Banokl

movlw b'00000000" iload w reg

movwi OPTION_REG ;put w reg intce option register

movlw b 00010000" ;Fosc/8

movwE ADCON1

movlw b 000000007 ;load w reg with PORTA I/C

movwE TRISA ;program PORTA

movlw L 00000001 ;load w reg with PORTC I/0 (RCO input all
;jothers output)

movwi TRISC ;program PORTC

movliw b 00010000’ ;RCO analog, all other digital

movwi ANSEL

BANKSEL Bank0 ;back to Bank?

Now more closely examine the bolded lines of code. Those are the ones specifically

~ associated with the ADC. The bit pattern b’ 10010001 sets up the ADCONO

register with right justified (ADFM=1), voltage reference V44 (VCEFG=0}, the next bit
unimplemented, ADC channel AN4 (RCO) selected (CHS2=1, CHS1=0, CHS0=0),
ADC stopped (GO/DONE=0), and ADC connected and operating (ADON=1). This bit
pattern is loaded into the w-register and then in turn loaded into the ADCONO register in
memory Bank 0.

The fastest ADC conversion clock that will give reliable conversions with the
4 MHz clock frequency used with the device and still be within the minimum conversion
time of 1.6 pS specified for this device is Fosc/8. The bit pattern b’ 00001000’ sets
up the ADCONI register with ADCS2=0, ADCS1=0 and ADCS0=1. This bit pattern
is loaded into the w-register and then in turn loaded into the ADCONI register. Note
that ADCONI 1s in memory Bank | and therefore that Bank 1 has to be selected before
actions can address ADCONT.

Finally, the RCO pin needs to be designated as an analog pin. The bit pattern
b’ 00010000 sets up the ANSEL register with bit ANS4=1, the other bits CLEARED.
This bit pattem is loaded into the w-register and then in turn loaded into the ANSEL
register. This register is also with Bank 1.

All that is left to do to use the ADC on RCO is to start the conversion, then read and
act upon the result. That is what is accomplished in the following code extracted from
the ADC program.

bsf BRDCONO, GO ;set GO bit to begin ADC conversion
wait ADC

btfsc ADCOND, GO ;check 1f ADC ccmplete (cleared bit)

goto wait ADC ;1f not, loop and wailt until clear

BANKSEL Bankl ;switch to Bank 1 to access ADC low
Jbyte

movEw ADRESL

BANKSEL Bank0 ;go back to Bank 0 to access 1 _byte
;variable

movwi 1 byte

moviw ADRESH ;get ADC high byte

movwif h byte iput in h byte

Analog to Digital Converter 11-5

The ADCONC GO/DONE bit is assigned the mnemonic GO in the PIC]16F676.inc
file and that is how that bit is referred to in this code example. The bsf opcode SETS
the ADCONO, GO bit and starts the ADC conversion. It takes a finite amount of time for
the PIC16F676 to complete the conversion. Once the conversion is complete, the device
hardware will CLEAR the GO bit. The next three lines of ¢code will sense the value of
ADCONO, GO bit with bt£sc. If that bit is SET, the conversion is not completed and
the program jumps back to the label wait ADC until the conversion is completed and
the GO bit is CLEARED. Once the ADC conversion is completed, the 10-bit right-
justified result is loaded into SFRs reserved for the ADC result ADRESL (which is in
Bank 1) and ADRESH (which is in Bank 0). The memory bank is switched to Bank 1
50 that the low 8-bits of the ADC result in ADRESL can be accessed and loaded into
the w-register. Once the value 15 in the w-register, the bank is switched back to Bank 0
where the 1_byte variable space is reserved and the contents of the w-register is loaded
into 1_byte. It is not necessary to switch banks at this specific location in the code of
this example to access the 1_byte variable location because in the 16F676 the General
Purpose Registers, memory locations 0x20 to 0x5f, are mapped across the both banks.
However it is a good habit to consider — being in the appropriate bank - because
other MCUSs that you might use may not have the same cross mapping architecture.

In any event there is no code savings because you still need to switch banks to access
ADRESH. Finally the high 2-bits of the ADC result in ADRESH are moved into the
variable space h_byte. The code that follows this segment would take some action
based on the ADC result.

Putting It into Practice —Build Up the Circuit

Now it is your turn. Build up the circuit as depicted in Figure 11-1 and as illustrated
in the picture in Figure 11-2. This circuit places a 10K € variable resistor on RCO (IC
pin 10). The top side of the potentiometer is connected to Vg, (which is the reference
voltage) and the bottom side to ground. The LCD display is set up so that the ADC value
can be displayed. Load the ADC project located at Program Files/Ch 11 Program/ADC
inte MPLAB IDE, build the program and install it info the PICT16F676.

It vou review the code in the program (file ADC.asm) you will see program lines
that are associated with working with the LCD display. Do not be concerned if you
do not fully undersiand these lines of code at this time. They will be covered in later
chapters of this text. The following gives just a brief explanation of the purpose of these
lines simply to put them in context for the main focus of this exercise.

The following lines send the characters “RCO” to subroutines that in wm send these

" vda vss |2 !
21 ras Rao |2
= .
“1ras O rat[2
Hras 3 razf”

Slres & Reo -10——75 10 kO
et tos A SlRres R

x Gnd =Y 7 a
27977 sy I — RC3 RC2 [—
ax B
ARRLOSG9 7

Figure 11-1

11-6 Chapter 11

Figure 11-2

characters to the LCD for display. The subroutine sends the characters serially to the

LCD:

moviw LCD_LINEO ;sends text to LCD display
call LCDOutput

moviw “RY

call LCDOutput

moviw nCr

call LCDOutput

mevlw nQr

call LCDhCutput

The following two lines move the cursor on the LCD to a position where the ADC

value will be displayed:
novlw LCD LINEC+4 ;moves LDC display location
;Tto line
;0 position 4
call LCDOutput

Finally, the call to the LCDOutput subroutine converts the 4-digit decimal ADC
value into a format that can be displayed on the LCD and then displays the value.

The main body of the program that does the ADC conversion should look familiar.
It was discussed in detail above.

Applying Power to the Circuit

When you apply power to the circuit, the LCD will display RCO and then the ADC
value (Figure 11-3). If you adjust the variable resistor, the value of the ADC will change

Analog to Digital Converter 11-7

proportionally to reflect the digital value of the
voltage applied to RCO. If you take a close look

at the 1’s digit of the ADC value, you will see it

rapidly change +/- some value. This is due to the
noise injected into the circuit by electronic and
computational limitations.

Next, using a voltmeter, measure the voltage
applied to RCO (the center post of the variable
resistor) and record the ADC value from one

Figure 11-3

Table 11-1

extreme (0 V) to the other (V, or 5 V). Next,
calculate the predicted ADC value based on the
applied voltage relative to the reference voltage
using the formula (voltage/Vref) x 1023 (on my board, Vref was measured
to be 5.04 V). Record these data points next to the observed ADC values for
comparison. The data in Table 11-1 was collected. This data was then graphed
using Excel graphing utilities and shows gooed linear ADC conversion (Fig-

Analog to Digital Converters are very powerful resources on MCUs.
The PIC16F676 has up to 8 10-bit ADCs available. The special function
registers ADCONOQ, ADCONI, and ANSEL are used to select and configure
these available ADC resources. The output of the ADC is stored in two SFRs
ADRESH and ADRESL. The ADCs have good conversion linearity and

Predicted
Voltage ADC ADC
0.03 4 8 ure 11-4).
0.5 100 101
i 201 203
1.5 304 304 Summary
2 403 406
2.5 508 507
3 608 608
3.49 707 708
4 809 812
4.5 911 913
5.04 1022 1023
therefore have a predictable outcome.
ADC Graph PIC16F676
1200 T—— -
1000 -

ADC Reading
[+2]
[=]
(=]

0

ARRLES10

Voltage In

Figure 11-4

11-8

Chapter 11

Review Questions

11.1 The ADC resources of the PIC16F676 share cormmon input circuitry. What
considerations must be taken because of this commeon circuitry?

11.2 Which register and bit are used by the PIC16F676 hardware to signal that the
conversion is still in progress?

11.3 Which register and bit can be used to disable the ADC circuits (this also would
reduce chip power consumption)?

11.4 Can you read both the ADRESH and ADRIESL registers while operating in memory
Bank 07

11.5 [s bank switching required in this code snippet? Explain your answer.

BANKSEL Bankl
moviw ADRESL
BANKSEL Bank0
movwi 1 byte

11.6 What could you do if you wanted to reduce the noise present on the LSB of the ADC
output by changing the ADC output from 10-bits to 8-bits? Write a short code segment
to efficiently accomplish this change. (Hint: look at left justifying the ADC data.)

11.7 What would happen to the contents of the ADRESH and ADRESL registers if you
clear the ADCONQ, GO bit before the ADC conversion is completed?

Analog to Digital Converter 11-9

Comparator

Objective: To learn how to configure and use the PICI6F676 analog comparator resource to sense
the relative difference between two input voltages and program an appropriate response.

Reading: PIC16F630/676 Data Sheet, pages 40-44.
Programs: Program Files/Ch 12 Program/Comparator_1

Program Files/Ch 12 Program/Comparator_2
Program Files/Ch 12 Program/Comparator_3

The Comparator Circuit

As the name implies, a comparator circuit compares the relative value of two
input voltages and returns either a high or low state based on the comparison. The
comparator has two different inputs, one non-inverting (+) and one inverting (-). When
the comparator is configured in the non-inverting mode, if the voltage applied to the
non-inverting input is less than the voltage applied to the mverting input, the comparator
output will be low and vice versa. Alternatively, when the comparator is configured in
the inverting mode, the outcome would be reversed. The PIC16F676 has one comparator
circuit that can be configured eight ditferent ways. The alternative configurations include
inverting/mon-inverting outputs, the outpur tied ro one of the /0 pins in addition to a flag
bit in a special function register, internal reference voltage tied to the non-inverting input,
and roggling berween I/O pins tied to the inverting inpus. During this exploration of the
comparator resource, you will focus on just two of these configurations,

Setting up the Comparator

The comparator resource needs to be set up in the Initialization section of the
program code. Configurations that need to be considered when setting up the comparator
include non-inverting/inverting output, connecting the output to an IO pin along with the
special function register flag available, and/or if the internal reference voltage ladder will
be used on the non-inverting input. In previcus program examples, the comparator was
configured in the off mode which internally grounded the inputs to the comparator circuit
to provide the lowest power consumption.

The Comparator Control Register (CMCON)

The Comparator Control Register 1s in memory Bank 0. The CMCON, COUT bit is
the comparator outpus flag. In the non-inverting mode, COUT will be SET if the non-
inverting input voltage is greater than the inverting input voltage. In the inverting mode,
the COUT bit state will be reversed. The CINV bit if SET will invert the comparator
output, CLEARING the bit will place the comparator in the non-inverting mode. The
CIS bit is the comparator input switch when the comparator is placed in the modes
represented by the CM2:CMO bit patterns b'110” or b’101°. The bits CM2, CM1, and
CMD0 set one of the eight comparator modes.

CMCON Comparator Control Register

Bank 0
X CouT X CINV CIS CM2 CMI CMO
Unimplemented Unimplemented Comparator Comparator Comparalor Comparator Comparater
Quiput Inversion Input Switch bit Mode bit Mode bit Mode bit

bit

12-2 Chapter 12

As was required in previous examples, the Analog Select Register, ANSEL needs
to be loaded with the bit pattern that assigns RAQ and RA1 as analog inputs because the
comparator inputs are analog and tied to those /O pins.

Bank 1

ANSEL Analog Select Register |

ANS7

ANS6

ANS5 ANS4 ANS3 ANS2 | ANSI ANSO !

RC3

RC2

RC1 RCO RA4 RAZ | RAI RAL

The VYoltage Reference Control Register (VRCON)

The Voltage Reference Control Register uses the internal voltage refererice and
configuring this SFR is not a trivial exercise. The PIC16F676 documentation provides
detailed instructions on the voltage range and step resolution of the internal reference
voltage and the instructions require solving a few algebraic algorithms to set the desired
reference voltage. The reference voltage is based on a proportion relative to V. In
this discussion, it is assumed that Vy, is 5 V. The reference voltage is divided into two
ranges, the low range will allow 16 voltage steps between 0 and 3.125 V — steps
of approximately .2 V; the high range will allow 16 voltage steps between 1.25 and
3.59 V — steps of approximately .15 V. The VREN bit enables the internal voltage
reference if SET, disables and powers down if CLEARED. The VRR bit determines
the voltage reference range used — SET for the low range, CLEAR for the high range.
The VR3:VRO bits set the proportional valhe of the selected range as calculated in the
documented algorithms (0 to [5, b’0000" to b'11117). The following are two examples
of using the algorithms.

VR3: VRO

For the low range, the algorithm is: v = xV,,. Substituting VR3: VRO = 10

(b 1010%) and 5 V for V0 2.08V :£x5 The reference would be 2.08 V.

VR3: VRO

For the high range, the algorithm is: V = Kﬂ:"—-!-[o

]x V,,- Substituting

VR3:VRO = 12b'1100" and 5 V for V., 3.125V =%+[§—§-}<5 The reference

would be 3.125 V.

Bank 1 VRCON Voltage Reference Control Register

VREN X VRR | X VR3 VRZ VRI VRO
CVref Unimplementgd CVref Range Uninrplemented CVref Value CVref Value CVref Value CVref Value
Enable bit Selection bit | Seleclion Selection Selection Selection

Comparator

12-3

Inifialization Segment of the Program Code for Setting Up Comparator

12-4

The following is a portion of the Initialization segment of the program code that you will be using

in this chapter’s exercise. The entire Initialization segment of the code can be reviewed and

studied in MPLAB IDE, only the relevant lines of code associated with setting up the comparator

are reproduced here.

movlw bro00c000L"’ ;non inverted, comp with output

;comparator with non inverted output, +/- inputs
scommected CM2:CMO = 001,COUT connected to
;RA2 - use in step one of exercise

; mnoviw bLf00010Q01" ;inverted, comp with output
;comparator with inverted output, +/- inputs
;connected CM2:CM0 = 001, COUT connected to
;RA2 - use in step two of exercise

; movlw b 00000010 ;non-inverted, comp without output
;comparator with nen inverted output, +/- inputs
;connected CM2:CMO = 010, COUT not connected
;to RA2, must be read in
;eoftware - use in step three of exercise

movwE CMCON ;

BANKSEL Bankl ; BANK1 ;

movlw L 00000011 ;RAO0, RAl is analog, all other digital
movwt ANSEL

BANKSEL Bank0 ;back to bhank{

The setup code contains code for three different comparator configurations, two are “commented”
out to facilitate exploring the comparator during the exercises. Review again the comparator
modes that are graphically summarized on page 41 of the PICI6F630/676 Dara Sheet for the
following discussion. The comparator is configured by the bit pattern that is loaded into the
CMCON special function register. The bit pattern is first loaded into the w-register and then the
contents of the w-register are transferred into the CMCON register.

movlw br00000001" The COUT bit (comparator output bit) works in concert with
the CINV bit (comparator inversion bit) 1o determine the reaction of the comparator relative

to the input voltages. If the comparator is non-inverting, the comparator output will be SET if
V... s greater than V. _and CLEAR if V,__is greater than V, _If the comparator is inverting,
the comparator output will be the opposite. The bit pattern b’ 00000001 CLEARS CINV and
therefore makes the comparator non-inverting.

The CM2:CMO bits of CMCON determine the comparator mode, Within the bit pattem
b 00060001’ the lowest 3 bits sef up the comparator with the output connected to 1/O
pin RA2. This allows the COUT bit to drive an external component connected to the /O
pin as well as allow the program to access the comparator output.

movlw b’00010001 This bit pattern SETS the CINV bit of CMCON which configures
the comparator as inverting. The comparator mode remains unchanged.

movlw bk’ 00000010’ This bit pattern CLEARS the CINV bit which configures the
comparator as non-inverting. The last three bits of the pattern change the comparator
mode so that the COUT bit is disconnected from the RA2 I/O pin freeing that resource
for other uses.

Chapter 12

Analog Select Register

The final SFR that needs to be addressed in setting up the comparator is the Anralog
Select Register or ANSEL register. The inputs to the comparator are analog voltages. The
output if connected to RAZ, is at digital levels, therefore, the associated 1/Q pins must be
configured appropriately. The bit pattern b 00000011 sets up RAQ and RA] as analog
inputs and RAZ2 (an all other port /O pins) as digital resources.

Three Programming Exercises to Explore the Comparator

You will now be doing three programming exercises to explore the use and
capabilities of the comparator. Wire up your proto-board with the circuit illustrated in
Figure 12-1. An example of the wired circuit is shown in the picture in Fig-

ure 12-2. This circuit
applies approximately

= 2.5 V on the RAQ (the
inverting input to the
b 4700 comparator) through a
~o—Hin et T +—Hvag ves 4 - voltage divider, a variable
L|:O Eﬂ; T i . rRao 2 | j«oltagfe on RAT (the non-
— 8V + 0.01 yF Zlras B RratpP im K 24700 inverting input to the
-i abnaseee il 11 comparator) through a
_5 [g rcol10 variable resistor, and an
5 o 4700 LED through a current
. s A N liriting resistor on RA2.
i 3 Load the program project
ARRLOS14 Program Files/Ch 12
Program/Comparator
Figure 12-1 into MPLAB IDE and open

Figure 12-2

the .asm file for study. This
program will be used for
three exercises to illustrate specific points about
the comparator.
Look in the Initialize segment of the code
with particular attention to these lines of code
{comments have been removed):

movliw b‘oo0000QOL”
; movliw L 00010001"
; movlw b’/ 00000010"
movwE CMCON

The first mov 1w opcode is active, the other
two are comumented out and are inactive. These
lines will sequentially be commented in an out
duning the exercises. The first mov 1w instruction
loads the bit pattern b’ 00000001 into the
w-register and the movwf opcode in turn
transfers this bit pattern into the CMCON register
to configure the comparator with RAT and RAO

inputs as inputs with the COUT bit tied to RA2 for output. In this configuration, the
comparator is actually a stand-alone resource that operates regardless of what is going on
with the program.

Comparator 12-5

Build and Load Program

Build and load this program into the PIC16F676. When the program is running in
the circuit, adjust the value of the variable resistor through its range. At some point, the
LED tied to RA2 will illuminate. Reversing the variable resistor rotation will extingnish
the LED. What is happening is that when the voltage on RA1 (C,,) is greater than the
voltage on RAD (Cy,), the LED will be off; when the voltage on RAI(Cy,) is Iess than
the voltage on RAQ (Cp), the LED will be illuminated. That is the basic function of a
comparator. The following is the truth table for the non-inverted configuration.

Using a VOM, measure the voltage on RAQ. The voltage should be approximately
half vV, or 2.5 V. Now attach the VOM to RA1. Observe the voltage

Table 12-1
Truth Table for the

Non-Inverted Configuration

on RA1 while you adjust the variable resistor through its range and
while observing the LED. Slowly adjust the variable resistor and stop
when the LED just turns on. The voltage measured at this point shouid

Input Conditions (non-inverted) ~ COUT De very close to the voltage applied to RAOQ. If you are very careful

RA1(Cy,) > RAO(C,y,)
RA1(Cy) < RAO(C,y,)

0 with the resistor adjustment and observe the LED very closely, you
1 should be able to detect the LED dim from full on to full off over a

12-6

main

very short range of resistor adjustment. The measurable voltage range
on RA1 during this transition is probably beyond the resolution of most
common voltmeters. This illustrates a characteristic of comparator
devices; there is some level of uncertainty in determining the difference between the two
input voltages when those voltages are very close together.

Now take a look at the main part of the program code:

goto main

Chapter 12

This code is simply a loop and accomplishes very little except keep the MCU busy.
The point bere is that the comparator is actually a scparate resource that is operating
simultancously and separately from the MCUJ program code. In a later exercise, the
program code will access the comparator and take some action based on the status of the
comparator output, but for now we will be looking specifically at the comparator as a
stand-alone resource.

The next exercise takes a look at the comparator behavior when it is configured
to have an inverted output. In the Initialization segment of the code, comment out the
first movlw instruction and remove the comment on the second movlw opcode lines as
illustrated below:

; movlw b’ 00000001
movlw b*000100017

;o movlw b’ 00000010
movwi CMCON

This change simply SETS the CINV bit of
the CMCON register to make the comparator Table 12-2

output inverted. The comparator in this Truth Table for the Comparator
configuration will follow this truth table: Inverted
input Conditions (inverted) COouT
RA1(C,y.) > RAO(C,,) 1
RA1(C,,) < RAO(Cy,) 0

Build the Modified Code

Build the modified code and load it into the PIC16F676. Now when you adjust
voltage on RA1, the output conditions that drive the LED will be inverted from the output
of the previous exercise when the comparator was non-inverting.

In the final part of this exercise, modify the code in the Initialization segment of the
code as indicated below:

; movlw b’ 00000001"

; mov1lw b’ 00010001
movlw b’00000010"
movwi CMCON

Build the Changed Code

This code change recenfigures fhe comparator as non-inverting but afso changes the
coroparator mode so that the output COUT bit is no longer connected to the RAZ T/O
pin. Build the changed code and load it into the PIC16F676. Now when you adjust the
variable resistor, there will appear to be no response because the LED does not turn on.
In reality, the comparator is still functioning; however, in this configuration the
comparator output is not available on the I/O pin and is only available through the COUT
bit of the CMCON register. This will be demonstrated in the next exercise.

Build Up Circuit ’
Build vp the circuit that is illustrated in Figure 12-3 and depicted in the picture in
Figure 12-4. This circuit moves the LED from RAZ2 to RC3 and adds another LED to RC4.
7805
a=mE 1} e roa
! Vdd Vssiﬁ
— s 2 rns RAOT
2 — RA RAQ!
+_ J 3) L g |12 <
— gv ~ 0.07 uF “dprs B RA1 10kQ 4700
:l “ras ﬁ raz [11
Slres & oo Figure 12-4
470 sl 9 : =
n|7—|< AAA (RC4 RGT
= 7l 8
RC3 RC2Z —
ARRLOS515

Figure 12-3

WoEow R
o EE e
TR TR
B

§

& =

Comparator 12-7

movlw
movlw
movwf

main
btfisc
goto
goto

Load the program project Program Files/Ch 12/Comparator 2 into MPLAB IDE and
open the .asm file for study.

Take a look at the Initialization segment of the code and take note of these lines of
code:

b’ 00000010
b’ 00010010’
CMCONM

This code should look familiar from the previous exercises. The first movlw opcode
will load the bit pattemn to configure the comparator as non-inverting with RAQ and RA1
connected to the comparator inputs and the comparator output is not connected to an
I/O pin (not connected to RA2). In this configuration, the program needs to access the
comparator output via the COUT bit of the CMCON register.

Now scroll down and review the main part of the program:

CMCON, COoUT ;sense CMCON, COUT bit, if clear skip next
flash RC3 ;if set do this goto
flash_RC4

goto main

flash_RC3
bsf
call
bct
call
goto

Build this program

12-8

; mov1lw
moviw
movwt

Chapter 12

In the main program, the bt £sc opcode senses the status of the COUT bit of
CMCON and makes a decision branch. If the bit is SET the next command is executed;
if the bitis CLEAR the next instruction is skipped and the following opcode is executed.
Those subsequent instructions that follow the btfsc opcede are goto instructions that
cause a jump to the program sections identified by the assigned labels £lash_RC3 or
flash RC4. These labels are descriptive of what is being accomplished by the associated
code.

PORTC, 3
wait250ms
PORTC, 3
wait250ms
main

The flash RC3 code first SETS the /O pin PORTC, 3 to turn on the attached LED,
calls a subroutine that will delay the program for 250 milliseconds, CLEARS the I/O pin
to turn off the LED and then wait again for 250 ms. The flash_RC4 code does the same
thing except the delay period berween turning the LED on and off is 50 ms.

Build the program, load it into the PIC16F676 and install the MCU into the circuit.
‘When power is applied and you adjust the variable resistor through its range, the LEDs
will flash in turn depending on the output of the comparator. This exercise illustrates how
a program can be developed to respond to the status of the comparator output which is
dependent on the relative values of the input voltages.

Now adjust the code in the Initialization section of the program to reconfigure the
comparator as inverting:

b’ 0080000107
k700010010
CMCON

Build and load this program

Build and load the program into the MCU. Now when you adjust the variable
resistor, the flashing LEDs will be opposite as in the previous exercise as you would
expect with an inverting comparator.

Up to this point, we have been using an external reference voltage connected to RAO
{C - This reference voltage is developed across the voltage divider circuit comprised
of two, series 470 €2 resistors that applied ¥2 V;, oo pin RAOQ. In this last exercise, you
will use and explore an internal voltage reference that is developed by a resistance ladder
module that 1s a resource within the PIC16F676.

Internal Voltage Reference Developed by a Resistance Ladder Module

The voltage reference module can output 32 distinct reference voltages that are
accessed in two voltage ranges, high and low, as detailed previously in this chapter.
The voltage reference module ts connected to RAD (Cy,,) by selecting the appropriate
comparator mode. The value of the reference voltage is selected by loading the
appropriate bit pattern into the VRCON special function register. You should go through
the calculation of the reference voltages using the algorithms that are documented
in the PIC16F676 reference manual as an academic exercise. You can compare your
calculations to the results calculated and provided in Table 12-3. In Table 12-3 you will
find the caleulated voltage {or the associated VR3:VRO bit pattern for both the high and
low voltage ranges. There are also columns for the measured reference voltages. You will
be performing your own measurements in the final exercise and you can compare your
measured values to those in Table 12-3.

Table 12-3

CM3:CMO = 011

Comparator with Output and Internal Reference

VR3:VRO Low Range b’ 101 0#### High Range b1 000

Dec. Binary Calculated Measured Calcufated Measured
0 0000 ¢ .02 1.25 1.25
1 0001 .208 22 1.41 1.40
2 0010 A7 42 1.56 1.57
3 0011 625 63 1.72 1.73
4 0100 .833 .83 1.875 1.88
5 0101 1.04 1.03 2.03 2.02
6 0110 1.25 1.24 2.1875 2.19
7 0111 1.46 1.45 2.34 2.35
8 1000 1.67 1.66 2.5 2.50
9 1001 1.875 1.87 2.66 2.65

10 1010 2.08 2.07 2.81 2.81

11 1011 2.29 2.28 2.98 . 2.97

12 1100 2.5 2.49 3.125 213

13 1101 2.71 2.70 3.28 3.29

14 1110 2.92 2.92 3.44 3.46

15 1111 3.125 3.13 3.59 3.61

Comparator 12-9

Build the circuit as detailed
in Figure 12-5
. » Build the circuit as detailed
: HE ok PG in Figure 12-5. Load the program
+ 2 —Ras RAO[— project Program Files/Ch 12
— 1 3 3 i2 10 kD :
= 9V 77 001 pF —RAM O RAt Program/Comparator_3 into
jl 2Rraa 7 ORA2 " s MPLAB IDE and open the .asm
Slees & reol® 00 file for study. In this exercise,
- B ro1 - you will be conﬁgu.ring the
7 5 h 4 comparator so that the internal
—Re3 RC2I&- T . .
| W reference voltage will be applied
ARRLES1S 7 to the Cpy, comparator input.
i e the value
Figure 12-5 Then you will chang
of the reference voltage by
making code adjustments. With
each change in the reference voltage, you will manipulate the other input voltage to
the comparator to determine when the input voltage you control matches the reference
voltage (by the status of the indicator LED) and make voltage measurements to verify the
applied reference voltage.
Display the . asm file and focus on the [nitialization section of the code. This
code segment configures the comparator with the COUT bit connected to RA2, RA1
connected to the comparator C,y_input, and connects the internal voltage reference to the
comparator C,, input:
movliw b'00000011"
movwt CMCON
Control of the internal reference voltage is via the VRCON SER. The following code
loads the appropriate bit pattern into the w-register and then transfers that bit pattern into
the VRCON register:
movliw br10101111° ;Vref on, low range, #### value
movlw b’ 10001111" ;Vref on, high range, ###f# value
movwE VRCON

12-10

Chapter 12

SETTING the VREN bit powers-up the internal voltage reference resistance ladder.
SETTING the VRR bit selects the low reference voltage range, CLEARING the VRR bit
selects the high reference voltage range. The four lowest bits of VRCON determine the
actual reference voltage within the selected range as determined by the algorithms. The
tnstruction movlw b’ 100011117 selects the high range and a reference voltage of
359V (foraV of 5 V).

During this portion of the exercise, you will be tasked to start with the lowest
reference voltage of the high range (lb* 0000), build and load the program into the
PIC16F676, adjust the variable resistor until the LED just comes on, measure the voltage
on pin RA1, and record and compare that measured voltage to the reference voltage
(change movlw b’ 1000####’ to the appropriate bi(pattern). Then go on to the next
reference voltage step in the high range (b 00017), and so on, to complete the
16 voltages available within the high range.

i

Summary

movlw
moviw

Once you complete that portion of the exercise, re-comment the code lines to change
over to the low range of reference voltages and repeat the process for the low range:

b LOL10####
br10001111"

At the completion of the exercise compare your measured reference voltages with
those listed in Table 12-3. Your voltages should be similar.

The use of the internal voltage reference has its positives and negatives. On the
positive side, using the internal voltage reference frees up an I/0 pin resource that can be
used for other purpases. On the negative side, you have limited control over the reference
voltage used and are limited to the 32 discrete values as determined by the internal
resistance ladder.

There is one comparator ¢ircuit available within the PIC16F676. This circuit operates
simultaneously and independently of the program that is running in the MCU. The
comparator can be configured in eight different modes with various configurations for the
comparator inputs, outputs and reference voltages. The CMCON special function register
configures the comparator, the VRCON register configures the internal resistance ladder
to a high or low voltage range and also sets the reference voltage to one of 32 discrete
values. The ANSEL register must also he addressed so that the I/O pins connected to the
comparator inputs are configured appropriately.

Review Questions

12.1 What comparator mode configures the comparator to consume the lowest power?

12.2 Which comparator mode connects the Cy,_and Cp, comparator inputs to RAO and RAT and
does not connect the COUT bit to RA2? Does the use of this mode create a conflict if your
application does not even use the comparator circuit?

12.3 What is the value of the internal reference voltage applied to comparator input Cpp+ in the
mode dictated by CM2:CMO loaded with b’ 0117 and VREN loaded with b’ 1000101177

Comparator 12-11

Interrupts

Objective: To learn how to configure and use the interrupt capabilities of the PIC16F676 that
allow the MCU to perform multiple tasks simuitancously. This chapter will introduce the concept
of the interrupt and use the interrupt from the RA2/INT External Interrupt resource of the
PIC16F&76 to illustrate the concept. Using additional resource interrupts will be covered in
subsequent chapters.

Reading: PICI6F630/676 Data Sheet, pages 5-7 and 65-63.
Program: Program Files/Ch 13 Program/Interrupt
Video: “Studying Interrupts”

Operations of an Interrupt

Interrupts are very powerful capabilities that are included in most common MCUs
including the PIC16F676. As the name implies, an interrupt suspends the execution of
the main program and a jump is executed to an interript service subroutine that takes
some action in response to the interrupting condition and then returns control of the MCU
back to the main program that picks up where it left off at the time of the interrupt. The
interTupt can be triggered by external or internal MCU resources.

The intertupt capable resources are monitored by the MCU for specific criteria to
be met and when those criteria are met an interrupt signal 1s generated by the hardware
within the MCU. Once an interrupt Is generated:

¢ The program that is being executed by the MCU is sugpended.

e The next line that would have been executed had the interrupt not occurred is
identified by the program counter (PC) and stored in a temporary memory location called
the Stack.

»The PC is replaced with memory location 0x04 that is reserved for interrupt service
code and the program jumps to that location. :

sThe program code beginning at 0x04 is generally a call to the interrapt service
subroutine where actions required by the interrupt conditions are accomplished.

e When the interrupt has been serviced, the return instruction that ends the interrupt
service subroutine “pops” the PC from the Stack and the execution of the main program
resumes at the code location identified by the recovered program counter.

*The MCU then continues to monitor for another interrupt to occur while it continues
executing the main program.

External and Internal Interrupt Capable Resources

13-2

Chapter 13

The interrupt capable resources within the PIC16T676 can be divided into the two
broad categories, those generated by external devices that are monitored by the MCU and
internal rescurces. The external devices might inciude switches or sensors (temperature,
pressure, magnetic, light, etc.) that are connected to I/O port pins, ADCs, or the
comparator. The internal resources that can generate interrupts include TMRO and TMR1
timer resources and write operations to internal Electrically Frasable Programmable
Read-Qnly Memory (FEPROM.} There are a number of special function registers
involved in working with interrupts that are configured in the device initialization section
of the program code and these SERs are also monitored and manipulated during program
execution to manage interrupts. During device setup, the special function registers include
enable bit “flags” that are SET to enable or CLEARED to disable the specific interrupt
resources. During program execution, the special function registers include interrupt
occurred “flags” that are hardware SET when a specific interrupt has been generated by a
resource and software CLEARED to enable additional interrupts. Additionally there are
overall interrupt enable bits that are SET or CLEARED to globaily control the interrupts
during program execution,

Seven Interrupt Resources

There are seven interrupt resources with the PICT6F676;

1. External Interrupt RA2Z/INT- an interrupt is generated when there is a state change
on PORTA I/O pin RAZ.

2. TMRO Overflow Interrupt- an interrupt is generated when there is an overflow in
the TRMO register from Oxff to 0x00.

3. PORTA Change Interrupis - an interrupt is generated when any of the PORTA
enabled I/O pins change state.

4. Comparator Interrupt - an interrupt is generated when the comparator output state
changes.

5. ADC Interrupt-an interrupt is generated when the ADC conversion is completed.

6. TMRI Overflow Interrupt - an interrupt is generated when there is an overtlow
in the TMR1 registers TMR1H and TMRI1L increments and overflows from Ox{Ifi to
0x0000.

7. EEPROM Data Write Interrupt - an interrupt is generated when a write to an
EBPROM location is completed.

Control of Interrupt Resources

These resources are controlled by individual flags or bits within three SFRs
(INTCON, PIR1, and PIE]) which can get a bit confusing. The RA2/INT, TMRO,
and PORTA Change Interrupts can be considered basic interrupt resources managed
through the INTCON register. The remaining interrupts can be grouped into a category
of interrupts generated by peripheral resources of the PIC16F676 managed by the PIR1
and PIE] registers. The peripheral interrupts are globally controlled as a group by the
PEIE bit within the INTCON register. All interrupts are globally controlled by the GIE
bit within the INTCON register. Therefore, to enable the peripheral interrupts, both the
PEIE and GIE bits need to be SET. To enable just the basic interrupt resources, only the
GIE bit needs to be SET. There will be more detail on the use of the interrupt control
bits later so be patient and follow closely during the next discussion on configuring the
controlling registers.

Bank 0-1 INTCON Interrupt Control Register
GIE PEIE TOIE INTE RAIE TOIF INTF RAIE
Global Interrupt Peripheral TMRO Overflow | RAZ/NT Port Change TMRO Qverflow RA2/INT External Port Change
Enable bit Interrupt Interrupt Enable | External lnterupt | Interrupt Enable | Interrupt Flag Interrupt Fiag bit Interrupt Flag bit
Enable bit bit Enable bit bit

INTCON. The Interrupt Control Register is used to setup and control the different interrupt
resources of the device. SETTING the individual bits will enable the interrupt, CLEARING the
individual bits will disable the interrupt.

GIE. The Global Interrupt Enable bit i3 like the master switch for all the different interrupts.
SETTING this bit will enable all the interrupts to function, CLEARING this bit will disable all the
interrupts.

PEIE. The Peripheral Interrupt Enable bit allows interrupts from the peripheral resources of the
PIC16F676 including interrupts from the ADC, Comparator, Timer1, and EEPROM Data Write.
SETTING this bit will allow peripheral interrupts, CLEARING this bit will disable the interrupts.

TOLE. The TMRO Overflow Interrupt Enable bit allows an interrupt when the TMRO counter

Interrupts

13-3

overflows from 255 (0xtf) to 0 (0x00). SETTING this bit allows the TMRO interrupt, CLEARING
this bit will disable the interrupt.

INTE. The RAZ/INT External Interrupt Enable bit allows an interrupt from a clocking signal
applied to pin RAZ. Whether the interrupt occurs on the rising or falling edge of this ¢locking
signal is determined by the state of the INTEDG bit in the OPTION_REG. SETTING the INTE
bit allows an interrupt from the signal on RA2, CLEARING; this bit disables the intermpt.

RAIE. The Port Change Interrupt Enable bit allows an interrapt when there is a change of state
on any of the authorized I/O pins on PORTA. Whether an individual PORTA /O pin is anthorized
to generate an interrupt when the pin state changes is determined by setting the appropriate pin in
the Interrupt-On-Change PORTA Register (IOCA) that will be covered later. Consider the RAIE
bit as a switch that turns on or off all port change interrupts, while the individual pin change
interrupts are tumed on or off by the IOCA register bits. SETTING the RAIE bit will allow the
PORTA change interrupts; CLEARING this bit disables the interrupts.

TOIF. The TMRO Overflow Interrupt Flag bit is used by the device to indicate if the interrupt was
the result of a TMRO overflow. As you may have noticed, an interrupt code will be triggered by
any of the different resources available on the MCU. It is up to you, the programmer, to determine
through your software code which of the resources generates the interrupt. Flag bits allow you to
make that determination. In this case, when a TMRO overflow interrupt oceurs, the TOIF flag bit 1s
SET. Early in the interrupt service routine (the subroutine program that you will write to deal with
an interrupt), a check of the various flags is accomplished — in this case, the TOIF flag, and if it is
SET, a TMRO interrupt occured and the program will take the desired action. You reset the TMRO
interrupt by CLEARING the TOIF bit. If you fail to reset the TOIF bit, additional TMRO interrupts
will occur immediately once the interrupt service routine has completed.

INTE. The RA2/INT Fxternal Interrupt Flag bit is used by the device to indicate if the interrupt
was the result of a clocking signal on the RA2 pin. As previously discussed, you will check the
state of INTF in the interrupt service routine to deterrmine if the interrupt occurred because of a
clock signal on RAZ. At completion of the interrupt service routing, the INTF pin must be
CLEARED to prevent unintended interrupts.

RAIF. The Port Change Interrupt Flag bit is used likewise by the device to indicate if the
imterrupt was the result of 2 change on authorized YO pins of PORTA. At the completion of the
Interrupt service routine, the RAIF pin must be CLEARED to prevent unintended interrupts.

Bank 1 PIE]1 Peripheral Intexrupt Enable Register
EEIE ADIE X X CMIE X X TMRIE
EE Write Complete | A/D Converter Unimplemenied | Unimplemented | Comparator Unimplemented Unimplemented | TMRI
I[ntermupl Enable bit | Interrapt Enable bit Interrupt Enable COverflow
bit Interrupt
Enable bit

PIEL. The Peripheral Interrupt Enable Register is used to allow interrupts from specific
peripheral resources including the EEPROM write, ADC, Comparator, and Timerl. The INTCON,
PEIE bit allows all authorized peripheral interrupts when SET, the PIE register bits allow
interrupts from specific peripheral resources.

EEIE. EE Write Complete Interrupt Enable bit allows an interrupt to occur when a write
operation to the EEPROM has completed. This interrupt may be required in your programs
because it takes time for a write operation to EEFPROM to complete. This interrupt capability
allows the program to do other things instead of halting while the write operation is accomplished.

13-4 Chapter 13

SETTING the EEIE bit allows an interrupt when the write to EEPROM operation is complete,
CLEARING the bit disables the interrupt. This bit will not be used during exercises in this text.

ADIE. The A/D Converter Interrupt Enable bit allows an interrupt to occur when an ADC
conversion is completed. It takes a finite amount of time for the ADC within the PIC16F676 to
complete a conversion. The amount of time is not fixed and 1s dependent on the supply voliage,
device temperature and other factors. Therefore the interrupt, if enabled, allows the program to
continue with other tasks while the ADC conversion process proceeds independently. Though the
ADIE will not be used during the exercises in this text, the associated ADIF, A/D Converter
Interrupt Flag bit will be poiled to see if the conversion is completed. SETTING the ADIE bit will
enable an interrupt when the ADC conversion is completed, CLEARING the bit will disable the
nterrupt.

CMIE. Comparator Interrupt Enable bir allows an interrupt to occur when there is a difference
between the two input voltages to the comparator circuit. The voltage differences between the
input voltages are relative and the relationship that will generate an interrupt is set by the bits in
the COMCON register that is covered later. SETTING the CMIE bit will enable an interrupt when
a voltage difference is detected by the comparator, CLEARING the bit will disable the interrupt.

TMRIIE, Timer ! Overflow Interrupt Enable bit allows an interrupt to occur when the Timer 1
counter registers overflow to 0x0000 (TMRO is an 8-bit timer, TMRI is a 16-bit timer). SETTING
the TMRI1IE bit will enable an interrupt when a TMR1 overflow occurs, CLEARING the bit will
disable the interrupt. '

Bank(PIR 1 Peripheral Interrupt Register 1
EEIF ADIF X X [CMIF | X X TMRI1IF
EEPROM Write A/D Converter Unimplemented Unimplemented Comparator Unimplemented Unimplemented TMRI Overflow
Operaticn Interrupt | Interrupt Flag bit Interrupt Interrupt Flag bit
Flag bit Flag bit

PIR1. The Peripheral Interrupt Register I contains the interrupt flags for the EEPROM Write
Operation, A/I3 Converter, Comparator, and Timer]l Overflow peripheral resources. When these
flags are SET by the microcontroller, the enabled resource has completed its assigned task and
generates an interrupt. The interrupt flags will be SET no matter if the interrupt for the specific
resource has been enabled or not (by setting the appropriate bit in the PIE], Peripheral Interrupt
Enable register, and setting the GIE bit in the INTCON register), therefore these flags can be
checked in your program before the output of the resource 1s queried for the outcome of its
operation. For instance, instead of using interrupts, you could monitor the status of the ADC by
checking the interrupt flag and wait for the conversion to complete before shifting the results of
the conversion into a variable space for further computation or action by the program. You should
use care to CLEAR the appropriate interrupt flag with software after you finished with the
peripheral resource so that additional operétions can be performed with that resource if desired,
and particularly before enabling an interrupt with the resouree. Failing to do so in the latter case
will result in continuous interrupts being triggered by the resource.

EEIV. EEPROM Write Operation Interrupt Flag will be SET when an EEPROM write has been
completed. The flag will remain CLEAR until the operation is completed. You need to CLEAR
this bit to enable another write operation or interrupt involving an EEPROM write operation.

ADIF. A/D Converter Interrupt Flag will be SET when the ADC has completed the conversion of
an analog voltage value to digital number. The flag will remain CLEAR until the operation is
completed. You need to CLEAR this bit to enable another ADXC conversion or to allow an interrupt

Interrupts 13-5

once the ADC conversion is completed.

CMIF. Comparator Interrupt Flag will be SET when the assigned comparator condition is
reached. The flag will remain CLEAR until that assigned comparator condition is true. For
instance, if you program the comparator to trigger when voltage on pin RAQ is greater than the
voltage applied to RA1, the CMIF flag will remain CLEARED until that condition is present,
immediately upon that condition being present on the two pins, the CMIF flag will SET and an
interrupt will be generated (if enabled). You need to CLEAR this bit to enable the Comparator and
to altow an interrupt generated by the Comparator.

TMRIIF. Timer I Interrupt Flag will be SET when the timer 1 has overflowed the counter
regisiers to 0x0000 {when running). The amount of time of this overflow condition depends on the
starting count that you assign when the timer is turmned on. The flag will remain CLEAR until the
overflow condition has occurred. You need to CLEAR this bit before you enable and start the
TMR resource to get an accurate time delay from an interrupt generated by the TMR1 overflow.

Bank 1 IOCA Interrupt-On-Change PORTA Register
X | X 10CAS [IOCA4 | IOCA3 | IOCA2 IOCAL IOCAQ
Unimplemented Unimplemented RAS Rad RAJ RAZ RAL RAQ

IOCA. The Interrupt-On-Change PORTA Register contains the enable bits for the individual
PORTA 170 pins to generate an interrupt when the state on the enabled pins change. SETTING the
bit enables the interrupt, CLEARING the bit disables the interrupt.

The EEPROM associated register will not be covered in this text. Readers are
encouraged to explore using the EEPROM capabilities after they have become more
familiar with the basic operation of MCUs. '

Exploring Basic Operation of Interrupts Using the RA2/INT
Interrupt Resource

In this chapter, the basic operation of interrupts will be explored by using the RA2/INT
interrupt resource. The operation of the tfimer interrupts will be explored in the next chapter.
Build the circuit for this exercise as depicted in Figure 13-1 and as pictured in
Figure 13-2. A momentary switch is connected to PORTA, 2 (RA2) and will serve as the
source of an interrupt signal when pressed. The LCD will be used to display the number
of times the switch is pressed (the number of interrupts generated). The LED will be
flashed on and off by the main

7805 program as an indicator that
= the MCU is accomplishing
1f RS s 1 14
Ll:o\o'“ e Pyw ; Vi Ves s some programmed task.
= 9V 12w T] RAS i iy E Load the project Interrupt
/l t —{RM D RAR located in the folder Program
Hras 8 reft Files/Ch 13 Program/
2lres @ roop? Interrupts folder into
Lrea re1 - l’ MPLAB IDE and display the
Vrca rea B ,I Interrupt.asm file.
77 /’/
4700
ARRLO523 Figure 131

13-6

Chapter 13

The PIC16F676 is configured with /O pin

PORTA, 2 as a digital input with weak pull-up
attached, all other /O pins are digital outputs.
The interrupt control registers are configured in
the Initialization section of the program code to
enable the RA2/INT interrupt. With this interrupt
enabled, the MCU will monitor the state on
PORTA, 2 for a change in state. As configured
with the weak pull-up attached, the static state of
this 1/0 pin is SET, when the switch is pressed
the state momentarily goes CLEAR. Therefore,
the RA2/INT is configured so that the interrupt is
generated when the RA2/INT pin goes low. Scroll
down to the Initialization section of the code and

Figure 13-2

BANKSEL
call
movwi

BANKSEL
clrf
clrf
mov1lw
movw
movilw

movwi

BANKSEL
clrf

movlw
rovwE
movlw
movwt
movlw
rovwi
movlw
movwl
BANKSEL

Bankl
0x3FF
OSCCAL

Bank0
PORTA
PORTC
LfO0000L1L”
CMCON
b’ 00010000

INTCON

Bankl
CPTION REG

L 000001007
WPUA
pro0goo1o0”’
TRISA

b’ 000000007
TRISC

b 000000007
ANSEL
Bank(

follow along as the register setup is discussed.

; retrieve factory calibration value

;select bank0
;clear port bus

;comparator disconnected

;globals off, peripherals off, RAZ external
;interrupt enabled,

;interrupt flags cleared

; Bank 1 selected
;enable weak pull-ups

;weak pull-up on RAZ

;RAZ set as input, others output
;program PORTA

;all output

;program PORTC

;all digital I/0

;back to Bank O

There are two registers that are configured in the Initialization section of the code to

set up the RAZ/INT interrupt. The RAZ/INT is one member of the basic interrupt group
and there are no peripheral interrupts used in this exercise, Consequently, to enable the
RA2/INT specifically, only the associated enable bit in the INTCON register, bit INTE,
18 SET. To ensure that the RA2/INT interrupt will not be generated until we want it to,
all interrupts (including the RAZANT interrupt) are globally disabled by CLEARING
the GIE bit in the INTCON register. The bit pattern b’ 00010000 CLEARS bit GIE
and SETS bit INTE. (Later in the code, the GIE bit will be SET to globally enable the
intertupt.) This bit pattern 1s loaded into the w-register and then transferred into the
INTCON register:

mov 1w
movwi

b’ 000100007
INTCON

Intetrupts 13-7

clrf

movlu
movwi

movlw
movwf

bsft

movlw
xorwf
call
goto

Tabte 13-1

Truth Table Exclusive OR
A B Output

0 0 0

i 0 1

¢ 1 1

1 1 0

Now that the interrupt is specifically enabled, the pin state change that will generate

the interrupt is configured. This is accomplished by ensuring the OPTION_REG,
INTEDG bit is CLEARED so that the interrupt is generated on the failing edge (high to
low transition) on the PORTA, 2 pin. If the INTEDG bit is SET, the interrupt would be
generated on the rising edge {(low to high transition) on the pin. The default configuration
of the OPTION_REG is b’ ¢0000000/, which enables the weak pull-up resistors and
sets the interrupt on the fall edge transition so the following code is actually redundant.
It however is good practice to deliberately configure the OPTION_REG in the event
that the initialization code is copied from one program to another where the default
configuration of the register is not appropriate. The clrf OPTION_REG instruction
CLEARS all bits within the QPTION_REG.

OPTION_REG

To connect a weak pull-up resistor on PORTA, 2, the following bit pattern would be
loaded into the WPUA register to enable the resistor:

br00000100"
WEUA

Finally, the PORTA, 2 pin is configured as an input pin by leading the following bit
pattern into the TRISA register: "

7000001007
TRISA

Now scroll down to the main part of the program.

INTCON, GIE

L7 000010007
PORTC
walt250ms
main

This program segment will flash the LED attached to PORTC, 3. Notice that the
instruction before the main program label SETS the INTCON, GIE bit to globally enable
interrupts. Then within the main program, the bit 3 is SET (this bit will refer to the
PORTC, 3 I/O pin) and loaded into the W-register. The xorwf opcode exclusively
ORs the bit pattern in the w-register with the bit pattern of PORTC and puts the
result back into the PORTC register. Remember, an exclusive OR Boolean logic
follows the truth table (Table 1). This is a simple way to toggle an I/O pin on and
off. If PORTC, 3 was SET, it is CLEARED and vice versa. The call to the delay
subroutine will cause a delay of 250 mseconds before the process is repeated.

Now scroll up to the beginning of the program where the reset and interrupt
vectors are declared:

:

:Reset Vector

= e e obe s b sbe ook s sl sfe s s oo ool ol b e ol ok s sl ol ol Aol st sk sl et sl sk sde b sl sl ok sk sleche ik sl ok ok iR o okl R okeloOR
s

13-8 Chapter 13

ORG 0x000 jprocessor reset vector
nop ;required by in circuit debugger
goto Init ;g0 te beginning of program

s st ot e sk e sk SRR ok e ook ok et b ook sk ok sk o sk sk sk oo etk sk ok oo ol ok sk sk o et b ke o sk ok e ok
kd

Jnterrupt Vector

>
ORG 0x004
goto interrupt_service
return ;interrupt trap - returns without re-enabling

Hardware Considerations

A short discussion of hardware is warranted here. It is hard-wired in the PIC16F676
that when the device is first powered-up or if a reset of the device is triggered, that the
program counter jumps to memory location 05000 to start the program. This is called
the reser vector. This section of the code is where you tell the program to jump to the
label that identifies where vour actual program code begins, in this case the label Init
is used (short for Initialize). It is also hard-wired in the PIC16F676 that if an interrupt is
generated, the program counter jumps to memory location Ox(004 to go to the interrupt
service routine. This is called the inferrupt vector. In this section of the code you tell
the program to go to the label interrapt_service which identifies the beginning of the
code that is run in the event of an interrupt. The memory locations (x000 and 0x004
are dedicated for the specific purpose of helding jump vectors to appropriate sections of
code.

Handling Interrupts

The following will be a fairly lengthy and detailed discussion on handling interrupts.
To begin this discussion we need to revisit the Stack.

The Stack

The Stack is a small amount of memory where the program counter is temporarily
held during calls to subroutines. The Stack is 8-levels deep and 13-bits wide. This means
that the Stack can hold up to eight 13-bit program counter addresses. When a call to
a subroutine is executed, the program counter address for the next instruction to be
executed upen the return from the subroutine is “pushed” onto the Stack. Upon the return,
the last program counter is “popped” off the top of the Stack and the calling program
resumes. The programmer must use care because of the limited size of the Stack. If more
than & “pushes” of program counter addresses occur before addresses are “popped”, some
information will be lost. Then if subsequent returns from subroutines are executed, the
associated program counter information will not be there and your program will crash.
This sitvation can occur when the programmer uses nested calls to subroutines, calls
to subroutines within subroutines. This can be a particular problem because interrupts
generate asynchronous calls to the interript service subroutine that might eccur when the
main program itself calls subroutines.

Conflict Precautions

There are also common working registers {the w-register and STATUS) that might
be used by the main program and subroutines at the same time which can cause conflicts

Interrupts 13-9

13-10

and program crashes. Programmers must use care that the contents of the w-register and
STATUS register are preserved and recovered when called subroutines could potentially
change the values within the registers.

With these precautions fresh in your mind, scroll down to the interrupt_service
routine in the code:

interrupt service

beof INTCON, INTE

movwE w temp

swapt STATUS, w

BANKSEL Rank0

movlw LCD_LINEG+.6

call LCDOutput

inef RAZ counter

moviw RAZ counter

novwi 1 byte

call display DEC

swapt status temp,w

movwi STATUS

swapf w_temp, L

swapf w_temp,w

bef INTCON, INTF

bsf INTCON, INTE

retfie

When an interrupt is generated, the PIC16F676 is hard-wired to jump to address
0x004, this is where you program a call to the interrupt_service subroutine. Upon this
call, the PC is pushed onto the Stack for later recovery on the return from the subroutine.
This jump to address 0x004 also CLEARS INTCON, GIE to prevent subsequent
interrupts. Normally the first thing that you would do in the interrupt_service routine is
to determine the source of the interrupt by checking the individual interrupt flags to see
which is SET, and therefore the source of the interrupt. However, in this program, only
the RAZ/ANT interrupt is being used and it can be the only source of the interrupt.
Even though the interrupts are globally disabled by CLEARING the GIE bit,
interrupt attempts wilt continue to be generated by the enabled interrupt resources when
the interrupt conditions are met. For instance, if an RA2/INT interrapt is generated
by a low condition on PORTA, 2 and the interrupt_service subroutine is in progress,
subsequent, rapid low conditions on PORTA, 2 will SET associated flags, even though
actual jumps to address 0x004 will be prevented. To prevent these attempted interrupts
from causing problems when the interrupts are globally enabled, the interrupts should
be disabled early in the subroutine, this is accomplished by CLEARING the appropriate
enable bit in INTCON register:
bet INTCON, INTE

Chapter 13

In this case, the RAZ/INT interrupt is disabled.

The program counier was automatically preserved on the Stack when the interrupt
occurred, however, it is a good programming habit to preserve the contents of the
w-register and STATUS register before those registers are changed within the interrupt_
service subroutine. The following lines of code save the contents of the w-register and
STATUS register in temporary variables in memory:

movwi w Lemp

swapl STATUS,w
BANKSEL Bank0
movwi status_temp

The movwE, w_temp instruction stores the current contents of the w-register into
w_temp. The swapf STATUS, winstruction is an elegant way to store the contents of the
STATUS register with a single command. The swaptf opcode swaps the nibbles within the
target register and stores the result in the w-register. (Later at the end of the subroutine,
the nibbles will be re-swapped to return them to the original sequence before being
retned to the STATUS register.) The alternative would be;

moviw STATUS
movwi status temp
Then to recover STATUS:
moviw status temp
movwi STATUS

The BANKSEL Bank0 directive ensures that Bank O is the operative memory bank
regardless of the bank selected at the time the interrupt occurred. Because the BANKSEL
directive modifies the STATUS register, it is put at this location in the code (after the
contents of STATUS is preserved). '

Now that the contents of the w-register and STATUS register are preserved, the
actions of the subroutine can be accomplished.

mov 1w LCD_LINEO+.6
call LCDOutput
inct RA2_counter
movfw RAZ_counter
movwf 1 _byte

call display_ DEC

Here the LCD cursor is moved to the end of the line, a temporary variable RA2 counter
is incremented by 1 and the new RA2_counter value is displayed on the LCD. The result
is that each time the switch button is pressed, RA2_counter is incremented and displayed.

After the L.CD display is changed, the w_register and STATUS register contents
are recovered:

swapf status_temp,w
movwi STATUS

swapf w_femp, £
swapf w_temp,w

The nibble content of memory location status_temp are swapped by swapf and placed
inte the w-register (remember that the STATUS register nibbles were swapped before
they were stored in status_temp, now they are re-swapped to return the nibble sequence to
the original state). The w-register contents are then stored back into the STATUS register.
The next two swapf opcodes swap the memory nibbles into and out of the w-register to

Interrupts 13-11

bef
bsf
retfie

Ceseemtly Untnn
R

File Rerpaters

Bk Tifis
Her thesar e Stads
LT e

Lol
Program Memory

Funetion Hegisters

1Memory Ussge Gauge

Stmulatos Treoe
Simukator Logic Analyzer

recover the original w-register contents. This could have been accomplished by using
movEw and movwf opcodes, however, the movEw opcode will affect the Z bit of the
STATUS register and could corrupt the just recovered STATUS register contents. The
swapf does not affect the STATUS register.

With the interrupt serviced and the w-register and STATUS register retumed to the

starting conditions, the interrupts need to he re-enabled before the program control is
returned to the main program:

INTCON, INTF
INTCON, INTE

AAAAA

uazyy

i incar:

Figure 13-3

goba THEN ice

SCCal
et AecL i precesso:
mop PCLATH i required
goto T PCON . gCo o bag

aaaaaaaaaaaaaaaaaaaaa

return THR1 bunt tEan —

[Faraich 1 [eteh 2| wrsich 3] wm-.ﬂ
!

Figure 13-4
13-12 Chapter 13

CLEARING the INTF flag resets the RAZ/INT interrupt flag to allow a new
interrupt. If this flag were not cleared by software, an interrupt condition would
immediately be present when the RA2/INT interrupt is enabled regardless
of the state on PORTA, 2. SETTING the INTE bit then enables future RA2/

INT interrupts. There is one last step, that is to enable interrupts globally. That

15 accomplished by SETTING the INTCON, GIE bit (remember that bit was
automatically CLEARED when the interrupt was generated). The retfie opcode
will cause the program counter to ‘pop’ off the Stack (o jump back to the calling
program and at the same time SET the INTCON, GIE bit.

The Interrupt in More Detail

Let’s use the debugging capabilities of the MPLAB simulator to further explore
the interrupt in more detail. Follow along using the text and figures to set up
the MPLAB simulator and step through the program as we monitor the program
behavior and the state of the register bits while we inject an interrupt signal as if we
pressed the switch attached to PORTA, 2.

Click on VIEW WATCH in the MPLARB IDFE menu bar (Figure 13-3). This
displays the Watch Window where we can display contents of selected registers
and memory locations. For this interrupt exploration, we are interested in the
contents of the INTCON register. This register is an SFR, so click on the down
arrow adjacent to ADD SFR, click on INTCON, and then click on the ADD SFR
button (Figure 13-4). A watch for the INTCON register will be added to the list of
watches. Note that the contents of the register can be displayed in various formats
at once, We are interested in the individuat enable and flag bits within INTCON, so
our main interest is the binary representation of the register contents (Figure 13-5).

Next we will set up the features that will aliow us to inject a simulated input
that will generate an interrupt, in this case, cause the voltage on PORTA, 2 to
momentarily drop from 5 V to 0 'V as if we closed the attached switch. Click on
DEBUGGER/STIMULUS/NEW WORKBOOK (Figure 13-6). This will display the
Stimulus dialog box. Here we will enter the types of actions that are needed
as stimuli and the pins associated with each stimulus. Click on the down arrow
under Pin/SFR (Figure 13-7). Highlight RA2 which refers to PORTA, 2 (Figure
13-8). Similarly enter another stimulus in the second line. Click on the ACTION
box on the first stimulus line and select Set High, and select Pulse Low for the
second stimulus action (Figure 13-9). Just for clarification of these two stimuli,
the simulater is not capable of simulating an enabled weak pull-up resistor,
therefore the first stimulus will be “Fired” to SET the PORTA, 2 pin high to
manually simulate the weak pull-up resistor. The second stimulus when “Fired” will
momentarily pull the voltage on PORTA, 2 low to simulate the swilch closure.

IR wE D - Watch

Ridzens |

Wains

IRTCOH Oman

[(ex | recime: ﬁ:r.:r__‘i\ v'l'-lr'l

[T] o] waena]

Figure 13-5

Stinitus - {Thatitied]

Ayrich | Pin / Fiegiste: Action | Adv

e |PrUSi (Aeen |
B

[TTT]

By
Figure 13-7

Break points

Figure 13-10

Figure 13-8

Siree Workbook
Save Viarkbook As
Thase Workbaok

B Laakuadmasambbadrsassania

IEURE

Figure 13-6

Sogach i?n.-'!-‘-tqdm St | Advanted Pin / fegier| Ciock Svukn

Fiie |Pin/5FR | dcken
> | RA2 Sl High
» MRA2 Y

[iwah * [Unts | Commmritsf Moz

1 cye

Figure 13-9

Break points will now be inserted in the code to stop the program execution at
strategic locations that will allow study. Double click on the line of code call interrupt_
service (Figure 13-10) and a B will be displayed in the left margin. Likewise set break
points as illustrated within the main program and in the interrupt_service subroutine
(Figure 13-11).

Figure 13-11

Interrupts 13-13

| imamditass th e

TRE LET LN
| | wen
guta Tn:t

£z 0=004

[-~

1ntecrupt _snEvisa

Btfnch | pa £ Regrematban § &

Tnit
BANESTL Bankd
call dxITT
movwf CSCTAL

BRANESIL Bspkd

elrE ToaTR
eler * zoRTC
noiu b'OGSIFl1L

merr [e)in=
mowly
enzbled

" movwt LNTOON

BRNHSZY, 2=nll H
al=f SEVICH RRG

i wetrievs F

* rooumsrster discsnnected
B100S10000° sglebals off,gezipherils s2f, RAD susernal inctexzgps

sincsrrupt Slzgs clzzrad

reck puil-ups
e vl e v P T P T == ;___ =
Add 550 | |A0COND "i £rid Symhol WBFE?E

Figure 13-13

G Tobbrnuots - MFAB SOESR0

rabura

Ma B8 B el Ccbgmel Mupmene o CHB ind -»-__
]:am-nl.n T

s R ——

Zce

supe Trsp - zetuzn: wltpout se-anchiing

exze

i

21 fncezmmt

{ stz [socom = J-acswuéi TEEETE

tpanze |

02

T
Aduzess | syofal Waem | .-:.....| B {nacmﬂ epec |

P samer) X3 o DL LS00

Figure 13-14
13-14

Chapter 13

Build and Explore the
Program

The MPLAB strnulator is now
ready to explore the program. Build
the program and click on the RUN
button. The program will run up
to and stop at the first break point.
This illustrates the point that the
hardware of the PICI6F676 is set to
jump to memory location 0x00 on
initial power-up and upon an MCU
reset (Figore 13-12). This is a good
opportunity to simulate the weak
pull-up on PORTA, 2, click on the
“FIRE” button in the Stimulus

Fos TP SFR [iiriin]
SatHigh
Pulse Low

dialog window,

Press the £7 key on the keyboard to step through
the program from the first break point until you reach
the line in the Initizlize section of the code where the
INTCON register is configured. In this area of the
code, the RA2/INT interrupt will be enabled by setting
the associated bit (bit 4) as peinted to by the arrow in
Figure 13-13. When you {7 step through the movwE
INTCON instruction, notice that the RA2/INT Enable
bit in INTCON is SET (Figure 13-14). The next line
of code switches to memory bank 1. Press the RUN
button again on the menu bar to continue with normal
program execution, the program will stop at the next
break peint. Notice here that the INTCON, GIE bit
has been SET to globally enable the device interrupt
resources, in this case the RA2/INT interrupt (Figure
13-15). Continuing the program execution will cause
the program to loop through the main program and
simply flash the LED attached to PORTC, 3 on and off.

1Bock b 10 Praz Intnmapis I crophoasm

CLeI on the LCD
szatar dzez:d
moare L8 BeT 28

.Uﬂ-—xr

Figure 13-15

Simulate an Interrupt

It is time now to simulate an interrupt. Click on the “FIRE” button in the Stimulus
dialog window as illustrated in Figure 13-16. This simulates the momentary closure of
the switch attached to PORTA, 2. Click on the RUN button on the menu bar to continue
program execution and notice that the program stops at the break point at 0x04, the jump
to the interrupt_service subroutine. This illustrates the hard wiring of the PIC16F676 to
jump to 0x04 when an enabled interrupt occurs. Also notice that the INTCON, GIE bit

S_in'w'lu:: - {r_Ninterruptshs

Aah i Fin? Aegrtetdcions | Advance

Fia [P 250 |Ackon 1
s f@ Szt High

Figure 13-16

Prabn

FE

“ORE 02004
geto LOTATIURE,
Eeturn

seyvice

BENESZL Hankl
mowaf OBCURL

a

. processo
i zemsirea by o ciresic

=21t DEIFE i o=etsigve fagpesy 2flitratien walus

ssslect bamxo

is automatically CLEARED by the hardware to prevent additional interrupts and that
the INTF flag bit is SET to indicate that an interrupt from RA2/INT has occwred
(Figure 13-17). Accomplish an {7 step though the program and notice that the
program jomps into the inferrupt_service subroutine. The first line of the interrupt
service routine CLEARS the INTCON, INTE bit to disable additional interrupts from
RA2/INT (Figure 13-18). Continue to £7 step through. the program and notice that
after the interrupt has been serviced by the interrupt_service routine (in this case the
interrupt counter variable is incremented and displayed on the LCD) and before the
program execution is retwned to the main program, the INTF flag bit is CLEARED

prasseczed

mssr-s| [\DL.JNU dkd Bz | 167578

-.mr=| DCORD +}

;lacazien, w23h w and SIATUS regizzers

spracesd wich the intersupt zervice
~

smove curzor To display tha RAT count

araplag DIC

Inatus_tewg, w jsvep bae nabblass in sratus_tesp and pus zesult

amsmntwsrs

Dedlete . | Addresa | Symeol v

Opdaze |

a5 L_TwTcow |

B
Aztews | Sysbol, Hove ﬁlue] ﬁ-u |..1-:,d.m1|-"".'.a"_‘nu | =

. 4B INTCON

Figure 13-17

STATUZ,

swapl

BRNWSEL Bank0

i woveE stetus_tems

|
prastected

Figure 13-19

'.w;u | hidcmaz |

b _byre tleay thesa vazisbles

senskble gishsl imservopee

= iaterxuzt

sthiz 221l puls the saarecter g ths LTD
Lo wke newy ehatites léahsiol
ocunter, contimue iF pon zaro)

ar sozoped tamt

Figure 13-18

u.r'

Figure 13-20

Interrupts

13-15

(so that the old interrupt event does not trigger a false interrupt) and the INTE bit is SET
to re-enable RAZ/INT interrupts (Figare 13-19).

Finally, continue to do £7 program steps and the program returns to the main program
at the point after where the interrupt occurred. Notice here that the retfie opcode
closed the interrupt_service subroutine and automatically SET the INTCON, GIE bit
to globally re-enable interrupts (Figure 13-20). Try going through the process again to
generate another interrupt to make sure you are comfortable with what happens during
the interrupt process.

Actually Run the Program

Summary

It is time now to actually run the program. Build and load the program into the
PIC16E676. Install the device into the circuit you built on the proto-board. When you
apply power, the LED should flash on and off indicating that the main program 1s
running. The LCD will display the RAZ label and the count (probably 0000) of the
number of interrupts that have been generated by pressing the switch. Now press the
switch and you will sec the result of generating an intermupt by momentarily setting the
voltage on PORTA, 2 pin to 0 V, the counter will advance by one count for each switch
closure and then retum to the main program to continue flashing the LED.

Interrupts provide a powerful resource that allows the MCU to accomplish multiple
tasks at once. When an external device or internal MCU resource senses a specified
condition, an interrupt signal is generated that causes the main program to cease operation
and a jump is made to an interrupt service subroutine that is designed to respond to the
interrupting condition. Upon completing the interrupt service call, the main program
resurnes. The interrupt resources of the 165676 are primarily contrdlled by three special
function registers, INTCON, PIR1, and PIE1 which are configured in the Initialization
section of the program code but can be manipulated in the run time area of code to
manage interrupts.

Review Questions

13-16

Chapter 13

13.1 What would happen if an interrupt “flag” is not reset before the interrupt service
subroutine returns control back to the main program?

13.2 Describe the difference between globally enabling interrapts (SETTING the
INTCON, GIE bit) and enabling a specific interrupt, for instance TMRO (SETTING
the INTCON, TOIE bit).

13.3 Does an interrupt have to be enabled for the associated interrupt flag to be SET by
the interrupt condition?

13.4 What is the depth {(number of bytes) of the Stack? What precautions must be
considered when warking with the Stack?

13.5 What precautions must be considered when using interrupts and other subroutine
calls that deal with the w-register and the STATUS register?

13.6 How can “break points” be vsed in program debugging?

Timer 0 (TMRO)
and Timer 1 (TMR1)
Operation

Objective: To learn how to configure and use the TMRO and TMR1 resources of the PICI6F676
for timed event interrupts and accurate time delays. This chapter will build on the previous chapter
that introduced the concept of the interrupt. Timer interrupts will be explored through
programming examples.

Reading: PIC16F630/676 Data Sheet, pages 31 - 36.
Program: Program Files/Ch 14 Program/TMRO Basic Operation
Program Files/Ch 14 Program/TMRO
Program Files/Ch 14 Program/TMR1
Video Files: “TMR0_1"
YTMRO_2”

Additional, More Elegant Timer Rescurces

14-2

Previously you learned how to use delay subroutines to create delays of standardized
length. These delay subroutines are commonly included in a library of subroutines that
are used in different programs by cutting and pasting the code. Though functional, there
are other more elegant timer resources available in most MCU devices including the
PICL6EG76 that can function as stand alone timers or counters that operate independently
of other MCU activities, can be started and stopped as needed and can generate interrupts.
The two timer resources in the PICI6F676 are identified by the mnemonics TMRO for
Timer 0 and TMRI for Timer 1. .

The two timers have similar operating characteristics. The timers can be set up to
operate in either a counter mode or timer mode. In the counter mode, the dedicated timer
registers will increment on state changes (either high to low or low to high transitions)
on specific /O pins. In the timer mode, the timer registers will increment on the internal
MCU clock or an externally applied clock signal. The main difference between the
two timers is in the magnitude of the interval or number of counts that can be handled.
TMRO can be considered a short duration timer; TMR1 can handle significantly longer
durations. These timer durations are all relative. However, neither can handle the lengthy
durations that are required by some applications, therefore TMRO or TMR1 cannot
always eastly reptace the use of delay subroutines.

The dedicated fimer registers mentioned defermine the number of counts or the
time interval that can be handled by the timers. TMRO has an 3-bit working register
labeled TMRO. Alternatively TMR | has two 8-bit working registers labeled TMRIL
containing the low byte and TMR [H containing the high byte for an overall total 16-bit
register size. The basic imer operation involves incrementing the associated register on
either clock pulses or count pulses. When the associated register increments through
0xff for TMRO or through Oxffff for TMRI to roll over to 0x00, a2 umer overflow flag
15 set and an interrupt is generated if enabled. The duration of the timer or the number
of counts required to generate the overflow condition is controlled by the starting point
that is programmed into the timer register before the timer is enabled and starts running.
For instance if you are using TMRO and want to reduce the omer duration to half the
maximum value, you would load 127 into the TMRO register before CLEARING the
TMRO overflow flag. With these starting conditions. the TMRO register would increment
on each clock cycle starting at 127 until the register reaches Oxff. The very next increment
of the register will overflow the register to 0x00, would SET the TMRO overflow flag
and an interrupt would be generated if enabled. Likewise, the duration of TMRI can be
controlled by the starting values loaded into the 16-bit register TMR 1L and TMRIH.

Chapter 14

Using Pre-Scalers to Control the Duration of the Timers

The duration of the timers can be further controlled by the use of pre-scalers. The
pre-scaler circuits associated with the timers can be configured and inserted between the
controlling clock or counter signal source and the timer input. The pre-scaler actually
divides the ¢lock rate by predefined factors or ratios which lengthens the duration of the
timers. For instance, if the TMRQ pre-scaler is configured to divide the clock rate by 16 (a
ratio of 1:16), the pre-scaler will deliver a single clock pulse to TMRO for every 16 clock
putses it receives from the clock thereby lengthening the time duration of TMRO by a
factor of 16. Alternatively in the counter mode, the TMRO could count up to 256 counts
without the pre-scaler, with the pre-scaler configured for a ratio of 1:16, the TMRO could
count up to 4096 counts.

TMRO Setup. There are three special function registers that control TMRO.

In the OPTION_REG, TOCS bit, TMRO Clock Source Select, determines if the clocking source for
the timer comes from the internal clock of the MCU or from an external clocking source connected
to the PORTA, 2 (RA2). SETTING TOCS configures TMRO to use an external clock source
(putting the resource ia the counter mode), CLEARING TOCS configures TMR0 10 increment on
the internal clock. OPTION_REG, TOSE bit, TMR(Q Source Edge Select, configures the TMRO to
increment on the high-to-low transition of the external clocking source if SET or 1o increment on
the low-to-high transition of the external clocking source if CLEAR. OPTION_REG, PSA bit, the
Pre-scaler Assignment, inserls the pre-scaler between the clocking source and TMRO if the bit 15
CLEAR or assigns the pre-scaler to the Waich Dog Timer (this resource is not covered in this text)
if SET. Lastly, OPTION_REG, PS2:PS0 bits, the Pre-scaler Rate Select (PS2, PS[, and PSQ), are
used to select from the available pre-scale ratios as detailed in the device documentation. For
instance a bit pattern loaded into the Pre-scaler Rate Select bits of b’000” would select a pre-scale
ratio of 1:2 while a bit pattern of b’ 111" would select a pre-scale ratio of 1:256.

The actual register TMRO is loaded with a value that determines the number of increments before
the register overflow occurs which in tum SETS the TMRO interrupt flag and generates an
interrupt. After each overflow condition, the TMRO register needs to be reset to its initial value if
equal time intervals or counts are required. Failing to re-set the TMRO register will result in the
full delay or count of 255 to be used. It is interesting to note that the TMRO interrupt flag is SET
upon the overflow condition regardless of whether the interrupt is enabled or not. This allows the
programmer {0 pole the status of the interrupt flag and take desired actions without having to
generate an interrupt. Of course the interrupt flag needs to be CLEARED because once it is SET
by the TMRO register overflow hardware, the flag can only be CLEARED by software and will
remain SET after the first overflow regardless of subsequent overflow conditions.

If the TMRO is to be used to generate an interrupt, the interrupt from the resource must be enabled
by SETTING INTCON, TOIE as well as enabling global interrupts by SETTING INTCON, GIE.
TMRO s considered a basic MCU resource and therefore is not controlled by the peripheral
interrupt enable bit in INTCON. Make sure that the TMRO Interrupt Flag (INTCON, TOCIF) is
CLEARED before enabling the TMRO interrupt or an automatic, unintended interrupt will
immediately be generated. The OPTION_REG and INTCON setup for TMR(} can be
accomplished in the Initiahzation section of the program code or in the main body of the code
depending on the application.

Bank 0 & | Interrupt Control Register - INTCON

GIE PEIE TOIE INTE RAIE TOIF INTF RAIF

Global Interrupt Peripheral Intermapt | TMRO Overfiow RAINT External Port Change TMRO Overflow RAZ/INT External Port Change

Enable Enable Interrupt Enable Interrupt Enable Interrupt Enable [nterrupt Flag Interrupt Flag Interrupt
Flag

Timer 0 (TMRO) and Timer 1 (TMR1) Rescurces

14-3

Rank 1 l

Option Register - OPTION_REG

RAPU INTEDG TOCS TOSE | PSA PS2 PS1 PS0

PORTA Pull-up Interrupt Edge | TMRO Clock TMRO Source Edge Prescaler Prescaler Rate Select Prescaler Rate | Prescaler

Enable Seleet bit Source Select bit | Select bit Assignment bit bit Select bit | Ratz Select
I | bir

The fellowing code snippets illustrate setting up the TMRO resource in the Initialization section of
the code:

BANKSEL Bankl
moviw bf0o0000001"
movwi OPTICN_REG
moviw 00000000
movwi TRISA
moviw b 00000000
movwi TRISC
moviw 700000000
movwi ANSEL
BANKSEL Bank0

bctE INTCON, TOIF
movliw b*1010000C0"
movwWi IRTCON

The bit pattern ' 00000001 that is loaded into the OPTION_REG assigns the internal clock as
the TMRO clock source TOCS, assigns the pre-scaler to TMRO, PSA, and sets the pre-scaler rate to
1:4 (bits2:0 PS2:PS0) to configure TMRO. The TMRO register will begin incrementing as
configured following the loading of the bit pattern into the OPTION_REG. You need to keep this
in mind because incrementing the TMRO register at this point may corrupt the first interrupt and
produce unwanted consequences. Deliberately CLEARING the TMRO interrupt flag, INTCON,
TOIF, prevents unintended interrupt consequences when the interrupt resource is finally enabled
and is a good programming habit. The bef statement CLEARS the TOIF flag bit. Finally the bit
pattern b’ 101000000 is loaded 1nto the INTCON register from the w-register by the movwE
statement to SET the GIE and TOIE bits to specifically enable the TMRO overflow interrupt and
globally enable all enabled interrupts (in this case, only the TMRO interrupt is enabled). Because
the TMRO register begins incrementing immediately upon configuring the TMRO with the
OPTION_REG, a better programming cheice would be to enable the TMRO interrupt just prior to
its need in the program. An alternative Initialization code might be:

BANKSEL Bank(
movlw b’ 00000000
movwi INTCON

main
;main program lines of code
movlw b’10100000
movwi INTCON
movlw b’ 00000000
movwf TMRO

;the rest of the main program
goto

main

In the above code, the Initialization segment of the code is changed so that the bit pattern
brooosooon’ CLEARS the GIE and TOIE bits disabling interrupts and also CLLEARS the TOIF
interrupt flag. (Remember the TMRO register is still incrementing after the OPTION_REG is

14-4 Chapter 14

configured.) At the appropriate point in the main program, the TMRO interrupt is enabled with the
bit pattern k' 10100000 being loaded into the INTCON register to SET the TOIE and GIE bits.
The TMRO register is still being incremented during the execution of these lines of code, so to
start the TMRO from the beginning, the appropriate starting point is loaded into the register, in this
case b’ 00000000, [This could have been more efficiently accomplished simply by using c¢lrf
TMRO, however the listed code is intended to emphasize the setting of the TMRO register to a
starting point.]

TMR1 Setup. TMR 1 is a peripheral resource and therefore is controlled by a ditferent set of
SFRs. The main differences between TMRO and TMR 1 include:

Table 141

TMRO

8-bits (TMRO Register)

Max time: 65536 us (@ 4MHz Clk)
Prescale up to 1:256

Basic resource

Starts when OPTION_REG loaded
External clock on PORTA, 2
Set-up and operating registers:
INTCON, OPTION_REG,

TMR1

16-bits {TMR1L, TMR1H registers)
Max time: 524280 uS (@ 4MHz Clk)
Prescale up to 1:8

Peripheral resource

Starts when TR1ON SET

External clock on PORTA, 5

Set-up and operating registers:
INTCON, TICON, PIR1, PIE1,

TMRO TMR1L, TMR1H
Bank 0 Timerl Control Register - TICON
X TMRIGE | TICKPS1 TICKPSO T1QSCEN TI1SYNC TMRICS TMRION
Unimplemented | Timerl Gate Timer 1 Input Timer 1 Inpu Clock | Timer | Osciilator Timer 1 External Timer 1 Ciock Timer | On bit
Enable bit Clock Prescale Prescale Select bit Enable Contrel bit Clock Tnput Sync Source Select bix
Select bil Control bit

TYICON. Timer I Control Register. This SFR configures the clock source for TMR and turns on
the timer. The TICKPS0 and TICKPS] bits select the pre-scale ratio for the clock as detailed in
the device documentation. The TMRICS bit configures the clock source for TMRI1 to the internal
clock when CLEAR or to an external clock source on pin PORTA, 5 if SET. There are three cleck
options available for TMR1, in the exercises in this text we will work only with the internal clock
oscillator of the device therefore the TMRI1GE, T1OSCEN, and T1SYNC bits will be CLEARED.
The TMRION bit when SET starts TMR L, when CLEAR, TMRI is off. The TMR1 registers will
start incrementing after TMR1ON is SET.

Bank 0 Peripheral Interrupt Register 1 - PIR1

EEIF ADIF X X | CMIF X X TMRIIF
EEFROM Write AID Converter Unimplemented | Unimplernented | Comparator Unimplemented Unimplemenied | TMRI1 Overflow
Operation Interrupt Interrupt Flag Interrupt Intesrupt Flag bit
Flag bit bit Flag bil

PIR1. The Peripheral Interrupt Register 1, contains the TMR1 Overflow Interrupt Flag, TMRI1IF.
When the TMRI registers TMR1H and TMRI1L overtlow from Oxffff to 0x0000, the TMR1IF flag
is set by hardware and must be CLEARED by software to allow further interrupts. IT this flag is
not CLEARED before the TMR interrupt is enabled, an immediate and probably unintended
TMR]1 interrupt will occur.

Timer 0 (TMRO) and Timer 1 (TMR1) Resources

14-5

Bank 1

Peripheral Interrupt Enable Register - PIE]

EEIE

ADIE X X CMIE X X TMRIE

EE Write

Complete A/D Converter Unimplemented | Unimplemented | Comparator Unimplemented Unimplemented TMRI

Interrupt Enable bit Interrupt Enabie Interrupt Enable bit Qverflow

bit interrupt
Enable bit

14-6

PIEL. The Peripheral Interrupr Enable Regisrer 1s used to enable the interrupts for the individual
peripheral resources of the PIC16F676. When TMRIE is SET, the TMR1 Overflow Interrupt is
enabled, but remember that two additional interrupt control bits also need to be SET to enable
peripheral interrupts, the PEIE and GIE bits in the INTCON register.

The following code snippets illustrate setting up the TMRI resource in the
Initialization section of the code:

movlw br00000000"

movwE INTCON

movlw k00110000 ;TMR1 pre-scale 1:8, internal clock,
;TMRL stopped

movwi T1CON

bcf PIR1l, TMR1IF ;clear TMR1 interrupt flag

BANKSEL Bankl ; BANK1

movlw L’ Q0000001 ;IMRY interrupt enabled
movwE PIE1
BANKSEL Bank0 ;back to bank®

The bit pattern b’00000000 when loaded into the INTCON register ensures that all interrupts
are disabled until needed. This could have been more efficiently accomplished with the single
instruction clrf INTCON. The bit pattern b’ ¢0110000’ when loaded into the TICON register
configures the TMR I pre-scaler to a 1:8 ratio and ensures that TMR is off. The bef PIR1,
TMRIIF CLEARS the TMR1 interrupt flag to prevent an unintended TMR1 interrupt. The bit
pattern b* 00000001 when loaded into PIE] will enable the TMR1 interrupt. Alternatively this
could have been more efficiently accomplished with bsf PIE1, TMRI1IE. There are other lines of
code that configure resources that are required in the Initialization section of the code, but those
lines are not listed above for clarity. All that is left to be done within the main prograr is (o
preload the TMRI registers TMRI1H and TMRIL, turn on TMR1 and enable the interrupt:

main
movlw b sl HEY-
movw TMR1H
movlw Joli-2:5-3:5:2-2:1:
movwE TMR1L
movlw bf11000000"
movwi INTCON
bsf T1CON, TMRION
;rest of the main program

In the first four lines of code, the w-register is loaded with the bit pattern of the values that are in
turn loaded into the TMRI registers. The TMR registers will increment up from these values
when the timer is turned on and an interrupt will be generated when the 16-bit value overflows to
0x0000. The bit pattern b 11000000 enables the individually enabled peripheral resource
interrupts and globally enables all interrupts when this value is loaded into INTCON. Finally, bst
T1CON, TMRION SETS T1CON to turn on TMRI.

Chapter 14

Basic Operation of TMRO

Now let’s take a look at the operation of these timers. We will turn our attention
first to TMRO. Load the project Program Files/Ch 14 Program/TMRO Basic
Operation into MPLAB IDE. This project as stored on the resource CD-ROM will
come up with simulator windows that will be used to monitor the contents of selected
registers and the stop watch to monitor the times for interrupts. The project will also have
breakpoints set that will be used (o stop the program at specific lines during execution
so that the contents of the selected registers can be viewed. This first program example
is looking at the very basic operation of TMRO. To do this exploration, TMRO will be
configured to generate an interrupt using various pre-scaler settings and TMRO register
starting values. The main program enables the TMRO interrupt and enters a holding
loop to await TMRO interrupt. The interrupt service subroutine CLEARS the interrapt
condition, resets the TMRO register value, returns control back to the main program.

Scroll into the Initialization section of the code in the TMRO Basic Operation.asm
file to these lines of the code that will be used to configure TMRO:

BANKSEL Bankl ; BANK1

movlw b'00001000" ;pre-scale assigned to WDT,
;R0 pre-gscale on TMRO

movlw b’ 00000000 ;TMRO set-up: pre-scale TMRO,
;pre-scale 1:2

movlw b 00000012 ;TMRO set-up: pre-scale TMRO,
;pre-scale
;116

moviw br00000111" ;TMRO set-up: pre-scale TMRO,
ipre-scale
;1:25¢6

movwEt OPTICN REG ;put w-register into option register,

;this starts TMRO

The commented lines will be used to change the pre-scaler assignment during the
exercise. The first time through the exercise, the bit pattern &’ 00001000 that is loaded
into the OPTION_REG assigns the pre-scaler to the Watch Deg Timer with no pre-scaler
assigned to TMRO.

Continue to scroll down into the main section of the program:

;main program

gself

interrupt

movlw b’ 00000000’ ;preload TMRO for a count that
;will generate an interrupt of length
movwf TMRO ;determined by this value
betf INTCON, TOIF ;clear TMRO interrupt flag
hsf INTCON, TO1E ;enable TMRO
bsf INTCON,GIE ;enable global interrupts
goto self | ;keep the main program busy doing

;something while waiting for an

;from TRMO

The bit pattern b’ 00000000 is loaded into the TMRO register to establish the
starting point for that register. This value will be adjusted during the exercise to see how
the starting point of the TMRO register affects the time delay of the TMRO interrupt. In
this case, the TMRO register will have to increment through the full 8-bits (255) before

Timer 0 (TMRO) and Timer 1 (TMR1)} Resources 14-7

an interrupt is generated. The bit manipulation of the INTCON bits CLEAR the TOIF
interrupt flag, enables the TMRO interrupt by SETTING the TOIE bit and globally
enables the TMRO interrupt by SETTING the GIE bit.

Build and Run the Program

Build and run the program. The program executes from the starting point at 0x00
through the device Initialization section of the code, through the beginning of the main
program that enables the TMRO interrupt and halts at the first breakpoint which is
located at the point where the interrupt_service subroutine is called (Figure 14-1). In
other words, the first TMRO interrupt has occurred. Take note in the WATCH window
that INTCON, TOIF (bit 3) is SET which indicates that the TMRO overflow interrupt
has occurred. The hardware of the 16F676 is set s that when an interrupt is generated,

~ the GIE bit of the
= .| INTCON is automatically
P T el CLEARED to disable
Trmmmmmmmmmmmmm—— : S, further interrupts. This is

Simch] Insucson oo | e

= [t indicated by inspection

e |";ars wSeesy [~ BCO0NN

| =L : of the INTCON register

Prazesio Froguency [MHE)

i in the WATCH window.
Also take note of the
value in the TMRO
register, in this case 2.
This number reflects that
the TMRO register has
incremented 2 times since
the TMRO register was
resef 1o the starting value,
in this case reset to 0.
2 The significance of this
Figure 14-1 number will be covered
a bit later. The numbers

in the STOPWATCH window at this stage are of little interest because there has been

program time required to run the overhead section of the code. Click on the ZERQ button

o clear these values.

Step Through the Program

Step through the program from the breakpoint by pressing the 7 key on the computer
keyboard.

Interrupt_Service Subroutine

The first step executes the goto jump into the interrupt_service subroutine
(Figure 14-2). Note that two instruction cycles were required to make this jump but more
importantly note that the TMRO register also incremented by 2 (starting at 2 and ending
at 4 at this point in the program execution), an equal number of changes as the instruction
cycles. With no pre-scaler attached to TMRO, as is the case for this first exercise, the
TMRO register increments in step with the number of instruction cycles.

Continue to 7 step through the program to the nop statement (Figure 14-3). Note
that the increment in the TMRO register matches the number of instruction cycles for
these two steps. Also note that the bet statements CLEARED the TOIE TMRO Interrupt
Enable bit to disable further TMRO interrupts and also the TOIF flag bit to get ready for

14-8 Chapter 14

the next interrupt. The

[T TOIF flag is SET by
i3 e hardware when a TMRO
] e o] ““4 overflow interrupt occurs
N e |l b PR and must be CLEARED
e | Pross gy () in software just as is done
¢X;f;‘;l’k-“f“’“" in this example. Failure
| ser ovmoowmoe to do so will result in an
'3‘ i HEECCIE R SRR EE0S immediate, wnintended
[Do oransashos TMRO interrupt when the
- interrupt is subsequently
‘ enabled.
: . e Click the RUN
m‘ = button in the menu bar
Deaste | ubiiess [Sybel] Vaiue] Ee Is»e:s% Amery to continue the program
w Tcon o meat oave P etigmts execution to the next
Figure 14-2 breakpoint which is at

. o
| Syt etrxchion Cucks | t 4 B
|z | Tene [uSece) [000

Figure 14-3

the end of the interrupt_
service subroutine
(Figure 14-4). Take note
that it took 8 instruction
cycles to complete this
portibn of the interrupt_
service subroutine, the

i e) AL TMRO register has been
cleared to zero and the
: TOIE bit has been SET
@ e to enable the next TMRO
dia - daree oA interrupt.
§ e Let’s take a

moment and discuss the

—) = significance of where it
] g 3 gy = E | e = =18 = . . .
P T : T\ i 15 in the interrapt service
Updste | Andvess’ | Symhal Namk | Valui | Hex [Decimes] Binady | Ghas subroutine that the
F [iF] THR> IHOE Bl l,&'_) [T VI T] . .
Py TIEOR 9x00_ Dans T neoutane TMRO register is reset to

its initial value. Clearly
it takes some finite

amount of time and instruction cycles to accomplish the tasks to service the interrupt. In
this most simple of examples, it took 8 ps and 8 instruction cycles. If the programmer
wants this amount of time to be included in the time interval between interrupts, then the
TMRO register would need to be reset at the beginning of the routine so that it would be
incremented while the subroutine is being executed. If the programmer wants the next
interrupt to occur a specified time after the previous is serviced, then the TMRO0 register

would be reset at the end of the subroutine as was done here. There may be critical timing
issues when this difference could be significant.

Continue with an {7 step to complete the interrupt_service subroutine {(Fig-
ure 14-5). There are a couple of things to note here. First, the retfie command
automatically SETS the INTCON, GIE bit to enable interrupts globally. Second, note
that the instruction cycles have advanced by 2, but the TMRO register values remains
0. In other words the register did not increment as would be expected. This illustrates a
hardware nuisance that once the TMRO register is written, the register will not increment

Timer 0 (TMRO) and Timer T {TMR1) Resources 14-9

Cz\BeckiEh 11 Prog THES | THRD R Dperadice sem

R pres
S-,nﬁ‘!mwchmq.ﬂn

Twp | Tme [uSeta) B OG0
=5 L]

s Py L] il

=
Eindry
s

address | Symocl Mame | vaiue | Eex |Decimad] [coez
21 THROD BaDd Suod LE

=] INTCON af g %3

1 THED Base e unaam

; £ gl :
Syrch | instuetion Cocles {I f

Zen | T (uoxs] 10:000000 |

Froceszot Frapency [MHz 1

Afdrees | Symbol mame | Valse | Sex [Decima: imazy
a1 THRD x0g GEpn ERIE " EETT
aE friiise] fad i 1 101000

Figure 14-5

during the next two
instruction cycles. This
might cause a problem
for the most critical
timing issues and the
program can compensate
by making appropriate
adjustments to the
starting values loaded
into the TMRO register.
The interrupt has
now been serviced and
the program is back
into the main loop. As
you continue to f7 step
through the program you
will see the instruction
cycles and TMRO register
to advance in step. You
can continve to do this
until the TMRO register
approaches 255 then
slowly step though the
program to observe that
mdeed, when the TMRO
register overflows from
0xff to 0x00, the next
interrupt is generated.
Alternatively, press
the RUN button to
continue normal program
execution to the next
breakpoint (Figure 14-6).
Remember that the timer
was zeroed at the end of
the previous interrupt,
now take note of the time

to complete the next interrupt, 268 ws. The instruction cycle time interval with the device
clock at 4MHz is 1 us, and in this configuration, the TMRO register increments in step
with the instruction cycle. It should therefore take 256 instruction cycles to generate a
TMRO overflow interrupt, or 256 us. But there is a difference of 12 us from what would
be expected. During our study of the TMRO interrupt, you noted that it took 8§ instuction
cycles to complete the interrupt service routine, 2 cycles to return program control to

the main program, and 2 cycles after a write to the TMRO register before the register
continues to be incremented, that is where the 12 ps difference comes from.

TMRO Register and Time Interval Between Interrupts

Next, let’s take a ook at how the starting value of the TMRO register affects the time
interval between interrupts. Remember that the TMRO register increments in step with the

1410 Chapter 14

B C:\Book\Ch 13 Prog

AEr

internal clock of the
device and an interTupt is
generated when the TMRO
register overflows to 0x00.
In the previous exercise,
the TMRO register was
loaded with 0x00 which
caused the timer 1o delay
the maximum amount
between interrupts. To
explore the TMRO register
starting point, you need to
change the starting value.

s pocon 3] @wmﬂﬂmm =

Scroll to the main program

L R e L and find the two locations
o T S oo in the code where the
Figure 14-6 TMRO register is loaded.
Change the value of the

literal that 1s loaded into the TMRO register to

b* L000GEAT
o

kel INTION, IOTF
bel INTCON, T0LE

128 or b* 10000000 {Figure 14-7). Build and
run the program, when the program stops at the
first breakpoint (at the goto interrupt_service
instruction), zero the STOPWATCH, and press
RUN again. If there are remaining breakpoints
from the previous exercise, press RUN until the
program stops again at the goto statement in

the interrupt vector section of the code. Note
that the time to complete the TMRO interrupt
with the register loaded with 128 is 140 ps,
significantly less than the time required with the
TMRO register beginning from 0x00 of 268 us
(Figure 14-8). The time 15 not half, this is due

chicck 0xZQ

rRdz

(e

to the instruction cycle overhead required to
execuie an interrupt. Do additional explorations
using various values from 0 to 255 loaded into
the TMRO resister and
take note of the time
differences.

Figure 14-8

Timer 0 (TMRO} and Timer 1 (TMR1) Resources

Pre-Scaler Effect on
TMRO Interrupt Time

Return the bit
pattern that 1s loaded
nto the TMRO register
to b’ 0oooooeo’ for
the next exercise that
compares the effect that
the pre-scaler has on the
TMRO interrupt time.

Zewo | Te fuSessd T

14-11

=8 The pre-scaler assignment and the ratio of the
pre-scaler is configured inthe Initialization
section of the code. Scroll up to that section
and find the cormmented lines of code that
will be loaded into OPTION_REG in the
following exercises (Figure 14-9), Comment
the first movlw command and remove the
comment from the second movlw command
as illustrated (comment lines are disregarded
during the program build process, a semi-
colon () indicates a comment line). The
bit pattern b’ 00000000 when loaded into
ied, DHED divaried, Sieas TOTE OPTION_REG assigns the pre-scaler to
TMRO and sets the ratio to 1:2 which means

Zan | Time [udecs | ‘\-524
[= e

i Processor Frequency [MHaz)

Syrich | drativction Cpeles r 'lf_‘:,.! |

P

|

Figure 14-10

that the TMRO register will increment once

for every 2 instruction cycles. As you did in
the previous exercise, build, RUN, zero the STOPWATCH, and RUN and note the
amount of time required to generate a TMRO overflow interrupt with the pre-scaler
assigned with a ratio of 12 (Figure 14-10). The time required is 524 us versus
268 us when there was no pre-scaler; this is approximately twice the time (the
difference again is due to the interrupt code overhead.} Because the TMRO register
increments only once for every two instruction cycles, it takes twice as long to
overflow the TMRO register and generate an interrupt. You can verify the increment
interval of the TMRO register by f7 stepping through the program and watching
the change in the TMRO register as displayed in the WATCH window and compare
that interval with the coincident change in the instruction cycle count in the
STOPWATCH window. '

Change the Pre-Scaler Ratio

Continue this exercise by changing the pre-scaler ratio to 1:16 and 1:256 with

adjustments to the commented lines in the Initialization section of the code. Run the
exercise and take note of the change in the TMRO register increment interval and in the
interrupt time. The following table reflects the data that you should expect. Note that the
maximum time for a TMRO interrupt is 63.5 mseconds.

Table 14.2

TMRO

Fre-scale TMRO Increment Interrupt Time
None Each Instruction Cycle (IC) 268 us

1.2 (b’000") every 2-1C 524 us

1:16 (P’'011%) every 16-IC 4108 ps
1:256 (b’1117) every 256-I1C 65548 us

14-12 Chapter 14

There are a few important points to remember about controlling the TMRO resource.

The time interval between TMRO Overflow Interrupts is determined in macro terms by
the pre-scaler ratio and refined by the value loaded into the TMRO register. Also there

are a few lines of code and associate instruction cycle overhead required to generate the
interrupt, these variables complicate the calculation of the actual interrupt time interval.
However, by using the MPLAB Simulator, you can determine the predicted interrupt time
interval with goed accuracy, the actual interrupt interval will depend on the accuracy

of the device clock circuit.

TMRO Resource Exploration Exercise

You will use the Program Files/Ch 14 Program/TMRO project for the next
exploration exercise. Load the project into MPLAB [DE, construct the circuit that is
depicted in Figure 14-11 and pictorially illustrated in Figure 14-12. In this circuit, an
LED is tied to PORTC, 4 through a current limiting resistor and a speaker is connected

to PORTC, 5. The
program sets up the TMRO

7805
1 " resource to generate an
REG .
Io\oi o 3001 T Vidd Vss e interrupt every 500 us
i av 2 uF T —Rras rao |22 and toggle the PORTC,
- h 3 3 12 3 ni
r —{RA4 0 RAT= pin to generale a
Aras 2 Rz 11 1000 Hz audio tone'in
) Filabpte reo 2 the speaker'. The main
470 6 lees iR program will flash the
7 8 LED at 1 s intervals. This
—{Rc3 rRezl—
ARRLOS31 /g program demonstrates the
multitasking capabilities
fan M the use
Figure 14-11 of an MCU by

w

Figure 14-12

of interrupts. Build the

program and Joad it
into the PIC16F676. Install the device into the
circuit and apply power to verify the program is
operating correctly.

The TMRO interrupt is used to toggle the

pin connected to the speaker to generate a square
wave with a period of | millisecond. This square
wave Is formed by SETTING the pin for 500 us,
then CLEARING the pin for 500 us, therefore we
are looking for an interrupt of the main program
at 500 s intervals. From the previous exploration
you found that a pre-scaler ratio of 1:4 and
setting the TMRO register to 0x00 will generate
interrupts at 524 ps intervals. All that you need
to do is refine the starting value loaded into the
TMRO register to reduce the interval to the desired
500 ps. To help determine this starting value, a
constant called TMRO_scale is defined in the
program and an initial value (which turns out to be

the correct value) of 14 is assigned to that constant label. Scroll up in the TMRO0.asm file
after the build to the Defines section of the code and you will see that constant definition:

#define BankO0 0x00
#define Bankl 0x80
#define TMRO_scale .14 ;TMRO preload factor, this value gives

;1000Hz toggle

Timer 0 (TMRO) and Timer 1 (TMR1) Resources 14-13

TMR1 Resource

14-14

As in the previous exercise, 2 breakpoint has been set inside the Interrupt vector
section of the code. Follow along in with vour MPLAR Simulator as we test the value of
14 as the starting point for the TMRO register. Press Run and the program will execute
and stop at the breakpoint after the first interrupt is generated. Zero the STOPWATCH
and press RUN again (Figure 14-13). Note that the time to generate the interrupt is 499
uS, that is about as close as you can get. Continue the exercise by changing the value
of TMRO_scale and see how it affects the interrupt interval and how you can use this
technique to refine the interrupt interval to meet the program demands. Also f7 step
through the program te observe the program behavior, particularly in the main loop of
the program and what happens when the interrupt is generated. The project as supplied
on the CD that accompanies this text is set up with the TMRO register in the WATCH
window so that you can monitor the incrementing of that register as you step through the
program. Take note of the starting value which will equal the value that 18 assigned to the
TMRO_scale constant. As the TMRO register approaches Oxff, slow down and observe the
program behavior as the register overflows from 0x00 to 0x00.

In the next exercise, we’ll combine the use of TMRO and TMR 1. The TMRO
interrupt will be set up to send a [000Hz tone to the speaker as in the previous exercise.
The TMR1 1nterrupt will use the ADC reading of the voltage on the wiper of the variable
resistor that 1s connected to the ADC resource as the TMR1 register starting point which
in turn will determine the TMR1 interrupt interval. The TMR 1 interrupt will tum on or
off the TMRO interrupt with the result that the generated tone would toggle on and off at a
period determined by the variable resistor.

Build the circuit as depicted in the picture in Figure 14-14 and jllustrated in Fig-
ure 14-15. Load the project Program Files/Ch 14 Program/TMR1 into MPLARB IDE.
The project includes appropriate WATCH and STOPWATCH windows if you want to explore
the program code in detail by using the MPLAB Simulator. Take this opportunity to scroll
through the TMR l.asm file to the Initialization section of the code and find those lines of
code that configure the TMRO and TMR 1 interrupt resources with the following:

TMRO - TMRO disabled, TMROIF CLEAR, pre-scaler assigned to TMRQ, pre-scale ratio 1:2

mnovlw
movwt

mnovilw
movwif

b* 000000007 ;globals disabled, peripherals disabled,

INTCON ;TMRO disabled, TQIF clearsd

b 0000000" ;TMRQ set-up: pull-ups enabled, X, internal clk, X,
OPTION REG ;pre-scale tmr0, pre-scale 1:2

TMR1 - TMR] pre-scale ratio 1:8, TMRI stopped, TMR] interrupt flag CLEAR, TMRI interrupt enabled

movlw
movwf
bef

movlw
movwi

Chapter 14

k'00110000°
T1CON

PIR1, TMRI1IF
b’ 00000001°
PIE1

g T

CRE G004

At the completion of
the Initialization section
of the code, the ADC
is configured and ready
for use and the TMRO
and TMRI interrupt

Sinpeatch

E:J!r_z-mi - =]
[afecs | § ,-i Ew
i

Procenss Preguray | HHZ)

€l | oote nsezoups_szue
return 1o
iInizialazstion
Figure 14-13
HAaw s T . ..:' M " o oa
- 5 04w @ EEEE T .Iai E a = 'E .
pd = =N -
I R TR P T ;1;- & a3 & Vo R
% & ® & § £ & -- 1 - -'_-‘: > . T e e
T mAE e R e S axialilme o Dyl S TR
Ba -rsu
TR i

B Ao

resources are ready with
the appropriate values

to be loaded into the
associated incrementing
registers, for TMR to
be turned on, and for the
interrupts to be globally
enabled, all done within
the main program.

Scroll down to the main program. The first
part of the program accomplishes the tasks
described above and then enters a holding
loop waiting for interrupts from TMR® and
TMRI.

call get adc
moviw h byte

movwt TMR1H

movliw b 11100000’
movwi INTCON

moviw TMRO_scale
movwf THMRO

bsf T1CON, TMR10N

self goto self

One subtle point needs o be explained in this
code. The TMR] interrupt interval is determined by
the overtlow of the 16-bits of TMR1H and TMRIL
bytes that make up that register, In this program
segment, only the upper byte of the register is

adjusted with varying starting

values because only this byte

produces interrupt interval

changes that are perceptible

1 14
i Sl s by the human ear, the
2{ras rao 2 .
5 - = lower bytes only contribute
—=1raA4 o RAT = L interval increments of a few
“ras T Ra H1—— 2 oke mseconds. The source of the
>1res > rco 2 starting values for the TMR1
Hrea rc1l2- 16-bit register is the 10-bit
7] RC3 RC2 i ADC value as determined by
the variable resistor setting.
ARRLOS32 . Oniy the upper 8-bits of the
ADC value is used and loaded
Figure 14-15 into TMR1H that sets the

Timer 0 (TMRO) and Timer 1 (TMR1) Resources

14-15

TMR interrupt interval. The shifting of the ADC bits to eliminate the lower two bits

is accomplished within the get_adc subroutine by having the ADC resource set to left
justify the 10-bit value when 1t is placed into the ADRESH and ADRESL registers. The
upper 8-bits of the 10-bit ADC value are loaded into the ADRESH register that is in turn
is transferred into the TMRI1H register. The contents of TMR1L is automatically set to
0x00 when the overflow occurs.

There are two interrupt sources, TMRO and TMR, however, each interrupt requires
different acticns. Scroll into the interrupt_service subroutine to Jearn how this is handled.

interrupt service

Summary

14-16

Chapter 14

btfss PIE1l, TMRI1IF
goto tone

call get_ade

mov fw h byte

movwE TMR1H

The first step in the interrupt_service subroutine checks the TMRLIF interrupt flag.
Since there are only two sources of interrupts allowed with this setup, the interrupt will
either occur from TMRI or TMRO. The bt £ss opcode checks the TMRIIF bit and if it
is SET, the next instruction 1s skipped, 1f it is CLEAR, the next instruction is executed. In
this case, if the TMRIIF is SET (in other words the TMR1 is the source of the interrupt),
the goto instruction is skipped. The code that services the TMRI interrupt resets the
TMRI register using the ADC value. It determines if the tone 1s on or off and toggles to
the opposite state, and prepares the TMR 1 resource for another mterrupt by CLEARING
the interrupt flag with the following code:

becf PIR1, TMRLIF
retfie

Remember, the retfie command automatically re-enables interrupts globally when the
program counter jumps back to the main program.

Load the program into the PIC16F676, install the device into your circuit, power it
up, and you should hear a continuous stream of tone dashes. If you vary the value of the
resistor, the tone dash length changes in step. The tone 1s generated by TMRO interrupts,
the tone dash lengths are generated by TMR1 interrupt intervals that are determined by
the ADC value that is adjusted by the variable resistor. Remember, the value of interrupts
is to allow the MCU to multitask. In this program, the actual main program is a simple
infinite loop, the tones are generated by interrupts. The main loop could just as easily
have been programmed to do other, more meaningful tasks.

There are two internal timer resources available within the PIC16F576 device,
Timer 0 (TMR®O) and Timer 1 (TMR1). The timer resources can be configured as
timers or as counters, this chapter focused on using the resources as timers. TMRO is
an 8-bit timer. Using an optional and programmable pre-scaler, this timer can generate
interrupts at intervals up to approximately 65 ms. TMRI is a 16-bit timer. Using the
optional and programmable pre-scaler, this timer can generate interrupts at intervals
up to approximately 524 ms. Longer time tnterval delays are possible by nesting timer
interrupts or by the use of delay subroutines. The interrupts generated by these timer
resources are stimulated by the overflow of associated timer registers that are incremented

though the maximum (Oxff or Oxdff) back to 0x00. The time interval between interrupts
is determined on the macro level by the configuration of the associated pre-scaler, and

on the micro level by the starting value loaded into the associated timer register. There is
some level of code and instruction cycle overhead associated with the use of the interrupts
that contribute to the end interrups time interval. This overhead is a function of the code
technique used. The interrupt interval time can be predicted by the use of the MPLAB
simulator before the code is loaded into the device and run in circuit. The actual interrupt
interval is ultimately dependent on the accuracy of the clock source for the device. The
tirner interrupt resources can be used simultaneousty in a program, the actual source of an
interrupt can be identified by checking the interrupt flags in the interrupt service routine
and taking appropriate action.

Review Questions

14.1 At what rate (in instruction cycles) does the TMRO register increment when there
13 no pre-scaler assigned to the resource. Alternatively, at what rate does the TMR1
register increment when a pre-scaler ratio of 0:0 is assigned?

14.2 What command begins the incrementing of the TMRO register? When does the
TMRI register begin to increment? N

14.3 Do the timer resources operate even if their interrupt function is not enabled?
14.4 Can you monitor the progress of the timer resources between interrupts? If so, how?

14.5 Why is it important to CLEAR the associated interrupt flag in the interrupt service
subroutine before returning control back to the main program?

14.6 In the programming exercises in this chapter, the interrupt service subrountines did
not contain code designed to tempaorarily store the w-register and STATUS register
contents while servicing the interrupt and then reload the pre-interrupt values into
these registers when returning o the main program as was recommended in the
chapter on interrupts. Why was this not a problem during the execution of the exercise
programs? Amend the exercise code to take these precautions.

14.7 You can very accurately determine the interrupt time interval due to program code
execution. What factor other than code determines the actual interrupt time interval?

How might you measure the actual interrupt time interval?

14.8 Thinking in general terms of the resources available in the PIC16F676, how would
you configure the resources to build a basic frequency counter?

Timer 0 (TMRO) and Timer 1 {TMR1) Resources 14-17

Asynchronous
Serial
Communication

Objective: To learn how to configure and use resources of the PIC16F676 for basic Asynchronous
Serial Communications. This chapter will describe in detail the serial programming techniques
used in the exercises and programs in previous chapters that used serial communication technigues
to send and display data on the LCD display.

Reading: Serial LCD(#27977) Data Sheet, pages 1-11.

Program: Program Files/Ch 16 Program/Serial.

Asynchronous Serial Communication

Asynchronous serial communication 1s 2 cOMMon communication protocol to
send and receive data between a MCU and an external device as a series of data
bits. “Asynchronous™ means that the data can be sent at any time without regard to
synchronizing the individual clocking signals of the MCU and the external device. To
accomplish the sending of data asynchronously there must be agreement between the
devices as 1o the configuration of a “start” signal that identifies the start of the data stream,
the number of bits that make up the data, the order the bits will be sent (LSB first or MSB
first), the rate at which the data bits will be sent, and a “stop” signal that identifies the end
of the data stream. This daie package consists of a start bif, 2 number of data bits, and a
stop bit. The advantage of this form of sending data is that only one line (or MCU pin) is
needed to send the data. The disadvantage is that timing is critical. From this point on, a
reference to serial communication will mean asynchronous serial communication.

How Serial Communication Works

In serial communication, the receiving device is connected to the MCU through a
data line connection. The receiving device monitors the data line waiting for the start
bit. Once the start bit is detected, the receiving device verifies the validity of the start bit
by checking that it is the proper length (time interval). If the start bit is determined to be
invalid, the receiving device continues to wait for another, and valid, start bit. If the start
bit is valid, the receiving device will wait ¥2 bit period and momitor the data line for the
first data bit. The data bit will either be high or low and the appropriate bit value of 1 or
0 will be leaded into a data register. The receiving device will then wait | bit period and
detect the next and subsequent bits. The first delay of V2 bit period puts the bit detection at
the center of the bit interval, subsequent delays of 1 bit period keep the bit detection at the
center of the subsequent bit intervals. After the correct number of data bits are received
(usually 8, or multiples of 8, or sometimes 7) the receiving device may look for a stop
bit. The stop bit length is venified, and 1if it is the correct length, the data 1s considered
valid and is accepted. Many times the protocol does not require a stop bit and the data is
assumed to be correct, this 1s usually the case for hardwired data connections. There are
also other more complicated protocols that include parity bits which are used as a simple
check-sum to verify the accuracy of the received bits. In the exercise program in this

chapter we will be using

1045 104 us the simplest form of serial
: communications using onl
High I I . 1 ony
| |1|2|3|4|5|6|7|8|/ Pofqi2lalalsial7lal” the start bit, 8 data bits with
Lo ~ T T T 1 = = the LSB bit sent first as
< Data Bits 2 depicted in Figure 15-1.
Z g ARRLOST] The oscilloscope view of a
byte of transmitted data is
Figure 15-1 shown in Figure 15-2.
15-2 Chapter 15

A I P EE——

T I $ (38| |
Resling State | 3 Resting State
1 § I

L1 0—0—1—011—1—0

| \] ‘ f High '
=
SR R
| B
—3 ==
| A —
Stari Bit —T b
| — 1 o =1 ow

HEEEEEREN

ARRLDS1Z

Figure 15-2

Serial Communication is Accomplished in Software in the PIC16F676 Device

There are a number of MCU devices that include specialized resources, instructions,
and registers for dealing with serial communications, for instance the PIC16F688. In these
parts, special function registers are loaded with values for baud rates, number of bits,
number of stop bits and parity bits (if used), and have receive and transmit registers where
data is stored. Once the SFRs are configured and loaded, the senal resources are enabled
and the serial communication is accomplished in parallel with other MCU operations. The
PIC16F676 device used in this text does not have these serial communications resources
and therefore the serial communications will be accomplished in software. This allows
you to fully explore serial communications to see how it is accomplished in software and
thereby better understand what is involved if and when you elect to use the more capable
MCUs that include dedicated serial communications resources.

Baud Rates
With the number of data bits defined, the baud rate (the length, in time, of the bit
interval) needs to be defined. There are standard baund rates for sertal commmunications
as listed in Table 15-1. The time interval of an individual bit is calculated by taking the
reciprocal of the baud rate. The bit intervals listed in Table |5-1 are rounded.
Table 15-1
Baud Bitlength (1)
2400 416 ys G
4800 208 s
9600 104 us
19200 52 us

Asynchronous Serial Communication 15-3

Port Resource Used as Data Line

The LCD unit recommended in the parts list that accompanies this text has switch
selectable baud rates of 2400, 9600 and 19200 baud. The 19200 baud rate will stretch

Byte-ic-send
movwf byte to_send

Reset bit counter
movlw .8
maovwf bit_counter

CLEAR data bit for
start bit
bef PORTAO

Call to bix delay
subrouting
call bitdelay

nextbit {loop)

Assume data bt is
CLEAR
bef PORTA,O

Rotate LSE righl into
carry bit
rrf byte_to_send,f

C CLEAR or SET?
btfsc STATUS,C

SET data bit
bsf PORTA,0

Call to bit delay

subroutine (—

call bitdelay

Decrement bil_counier,
is it zero?
Decfsz bitcounter,f

Retum daia ffine high
bsf PORTA, 0

ARRLOS13

Figure 15-3
15-4 Chapter 15

the himits of the PIC16F676, therefore the 9600 baud rate will be used
in the exercises. To accomplish serial communications in software,

the port resource to be used as the data line is configured as a digital
output pin, delay subroutines that are the length of a bit for the desired
baud rate are authored, the data bits are shifted out of the data byte
variable in the required direction (in this case LB first) and checked
for either a high or low state and the data pin is SET or CLEARED for
the bit period. Review the code block diagram in Figure 15-3 before
we go over the code segment for sending serial daia.

Program Exercise

Open MPLAB IDE and load the project Program Files/Ch 15
Program/Serial. This project as stored on the CD-ROM includes a
WATCH window with the w-register, the STOPWATCH window, and
break points assigned at specific locations in the code. These windows
and break points will be used as we explore the serial communications
routine with the MPLAR Simulator. The program in this exercise
simply sends the word “Hello™ by 9600 baud, L.SB first, serial
communications to the LCD for display. Scroll down into the main
part of the program and take note of these lines of code:

;main program

moviw LCD_LINED
call LCDOutput
movlw “H~
call LCDOutput
moviw et
call LCDOutput

The characters or LCD display command codes are loaded nto
the w-register and the subroutine LCDOutput is called. The real work
of sending the serial data stream is accomplished in the subroutine.
The first movlw command loads the value 0x80h which is the
command value recognized by the LLCD hardware to move the cursor
to the first line of the display, far left column. The LCD command
constants are defined in the program and assigned descriptive labels.
These LCD command constants are listed in the LCD documentation.
The LCDOurput subroutine then takes the value that was passed to
it in the w-register and sends it to the LCD via a serial stream. On
return to the main program, the next character “H” is loaded into the
w-register and it is sent to the LCID and se on.

Scroll down and display the LCDOutput subroutine. Let’s focus at
the beginning of the code in the subroutine:

LCDOutput
movwf byte_to_send
movlw .8
movwi bitcounter
bef PORTA, 5
call bitdelay

W-Register

The w-register contains the value that we want to send to the LCD. It was loaded
before the call to LCDOutiput. The w-register is manipulated and used in virtually all
parts of the program so it is Important to keep in mind that the contents of the w-register
will probably be changed often, consequently, the value contained in the w-register is first
moved into a working variable location, in this case byte_to_send. To keep track of the
number of bits as they are being sent to the LCD via the serial stream, a variable called
“bitcounter” is loaded with the number of bits to be sent, in this case 8. As depicted in the
oscilloscope illustration of the serial stream in Figure 15-1, the resting state for the serial
data line is high (traditionally called the Mark, the low state is called the Space). Earlter
in the code, the data pin PORTA, 5 was SET to establish the Mark state. The bef PORTA,
3 instruction brings the data pin low to start the start bit. Finally the call to bitdelay
which will generate a delay of approximately 100 us, the delay required for 9600 baud.
The next section of the LCDOutput subroutine code will send the § data bits. Turn your
attention now to the remainder of the subroutine code and the internal loop:

nextbit
bef EORTA, S
rrf byte to_send,f
btfsc STATUS, C
bsf PORTA, 5
call bitdelay
decfsz bitcounter, f
goto nextbit
bsf PCRTA, 5
call delaysms
return
The loop begins by assuming that the next hit to be sent in the serial stream is
CLEAR. This assumption 1s arbitrary. It could just as easily have been assumed to be SET
(with requisite code changes). In the serial protocol used by the LCD, the least significant
bit is sent first. The rzf instruction rotates the LSB of the target register into and through
the camry bit which is STATUS, C and stores the result
MSB LSB back into the farget register as illustrated in Figure 15-4.
3 | - | 6 | 5 , 2 l 3 | 5 | y The btfsc STATUS, C instruction checks the state
of the carry bit and if it 1s CLEAR, the next instruction is
skipped leaving the data line pin CLEAR. If the carry bit
PR 1s SET, the next instruction is executed making the data
line pin SET. The data line state now matches the state of
Figure 15-4 the data bit to be sent. The call to the bitdelay subroutine

maintains that state for the desired bit length. The decfsz
command decrements the value stored in the variable bitcounter (the first time through
the value goes from 8 to 7, and so on) and the decremented value 1s stored back into the
variable. If the decremented value is not zero, meaning there are more bits to be sent, the
next bit is sent. If all 8 bits have been sent, the goto statement is skipped over. The data
line pin is returned to the resting state, SET, by bsf PORTA, 5 and a call to a short delay
subroutine to allow the LCD hardware to respond to the new data received completes the
serial transmission of the value passed to the LCDOutput subroutine.

Build the Program

Let’s see how this all works in the software. Build the program and press RUN. The
program will stop at the first breakpoint in the LCDOutput subroutine and zero the

Asynchronous Serial Communication 15-5

i oot Stopwatch (Figure 15-5).
Sgmalch Run the program to the
= ol LRt el C“ next breakpoint and note
MW (he time required to
complete the call to the
bitdelay subroutine
(Figure 15-6). This
portion of the code sends
the start bit, which for a

baud rate of 9600 baud,

Freeweiani Fieguency [MH2j

the bit length should be
104 us, the delay of this

Bonk'Ch 15 Prog Seoafich 1% Senelssm

tine is 100 ps.
T routine is s

AN i = 3 This difference is a

Sapreeatch ., -) .
st oiton G| () trad.eoff as you will see In
L e] a minute and produces

- 1 acceptable timing for this
Frocwsss Fasgmrey {MHz 1 oo
e application. Zero the
Stopwatch again and run

the program again — this
will take you through the
_ sending of the first data

| T | bitin the stream (Figare

ey i 15-7). Note that the time

| fenn Gyes E required to send the data
b Wi s bitis 107 us, or 3 us
longer than required for
9600 baud. This is due to
the code overhead
required to access the bit
to be sent, determine its
state, set the data pin state

| ProcesiaFrequmey (M1

to match, check the bit
count, and return for the
next bit to be sent. Consequently, the data bits will not be exactly time centered at the
receiving end, but the timing is well within tolerances for this application, particularly
when sending only § bits. Sending more bits, or at a higher baud rate (shorter bit time
interval), the time delay created by the code overhead might be significant and require a
different program architecture to keep within timing tolerances. Continue to run the
program through the next and subsequent bits and the time required remains static. Load
the program into the PIC16F676.

Putting It Together

15-6

Chapter 15

Connect the LCD to the PIC16F076 as depicted in the circuit in Figure 15-8. The
LCD data line is connected to PORTA pin 5. Insert the device in circuit and power it up.
You will see “Hello” displayed. Before we leave senial communications, let’s take a closer
look at those values that are sent to the LCD to display characters.

Remove the two breakpoints in the LCDOutput subroutine and scroll up to the
main part of the program. Set a new breakpoint as illustrated in Figure 15-9 and run
the program to this new breakpoint. Look down at the WATCH window and note the

7805
\C 1] =& |3
:_EO " o 0.01L

Parallax Serial LCD Gf&'
27077 L

|~ [o | |& Jeo | |-

contents of the w-register in
14 the various numerical forms.
e ko s /-J-/ The code [oaded the letter
RAS - kg 1_2 “H” into the w-register. The
RA4 O RAT— numerical value actually
RA3 % raz KL loaded is the ACSII value
RCS > rcao 9 that represents the letter “H,”
RCA roilL2 in this case 72 decimal. The
4ol |8 ASCII code is a standardized
code of numerical values
ARRLOSHT that are used to display alpha
numeric characters or to

Figure 15-8

control video displays. If you
set additional breakpoints
to skip over the calls to the LCDOutput

subroutines and view the w-register

| contents for each letter, you will see the

J ASCII value for “e” is 101, for “I” is 108,
. and “g”is 111.

Next remove any breakpoints that you
inserted. Remove the commeuts from the
two lines of code that will load the value 1
into the w-register and send that value for
display, and set a breakpoint on the call to
the LCDOutput subroutine as illustrated
in Figure 15-10. Build the program, Joad
it into the PIC16F676, install the device
into your circuit, and power it up. You

e e

atch

KisER| feocann =) :

Update |

would expect to see “Hellol™ displayed,

but in reality you see “Hello~". Retum
to the code in MPLARB IDE and run the

Figure 15-9

! call LToutpar
F{:} Leo 2
(ﬂ‘;_“t‘\:—.ﬂ-i L I:I.”.:.”,;u:

zals

szandz tess g L

Figure 15-10

code to the breakpoint (Figure 15-11).
Note that the w-register contains the
decimal value of 1 as commanded, but
notice that the character representation of the number 1 is
*” not the character ““1”. What the program sent to the LCD
was the numerical value 1 which is the ASCII code for the
Start of Heading command. The LCD hardware apparently
cannot decode that ASCII command and in turn displayed the
character “~ instead. You will need to keep in mind when
working with display devices that you need to send the ASCII
code representation of numbers, not the numbers themselves.
To determine the ' ASCII code representation of the numbers 0
through 9, simply add 48 to the number value to come up with
the ASCII code for that number. So the number | is actually the
value 49 in ASCI code.

Go back to the code in MPLAS IDE and remove the final
commenf as ilustrated in Figure 15-12, build the program

and run the program to the breakpoint as before. The opcode addlw adds the literal 48
to the contents of the w-register (1) and places the result back into the w-register. This
instruction converted the number 1 into the ASCI code representation for *17 and this

Asynchronous Serial Communication 15-7

P T T e A

sput tha Sasized value inbd the megizsas

o
& SRR janCong =] Add Sl |
ddrss [y

Updace | A Ll

Woecimal Bioary |!' gar |
i ALl R R
Figure 15-11
R |
of =
L s S A

A5 | Jaoronn =} add Spad [_1EES

Todate | Zddr=ss NSy

Figure 15-12

is the value that is sent to the LCD for
display. Load this modified program

into the PIC16F676, install the device in
circuit, and power it up. Now you will see
“Hello1” displayed.

Data Format Is Important

| am emphasizing the poin{ about
ASCI code for a good reason. Frequently
data is passed back and forth between
devices in ASCI code and not the actual
numerical values. It is important to keep
track of the formart that is being used if
you are going to do any mathematical
manipulation of the data. For instance, if
the devices are using ASCII code to pass
numbers, then before any mathematic
operations can be dorne on those numbers,
the data must first be converted into the
numbers that the ASCII values represent
by subtracting 48 from the ASCII value.
Then when the mathematics is completed,
the results must be converted back into
ASCII by adding 48 to the number before
the results are sent back to the device.

Pluses and Minuses of
Using Delay Subroutines

One final note needs to be addressed.
The delay subroutine that is used to

generate the bit length in the exercise generated a delay of 100 ps instead of 104 ps. This
delay interval was a compromise so that one delay subroutine could be used to generate
an “‘acceptable” data stream that is recognized by the receiving device, in this case the
LCD. The start bit was deliberately shortened to compensate for the lengthened data bits
that follow (due to the code overhead to detect the state of the individual bits being sent).
The final compromise was determined by trial and error. At increased baud rates (shorter
bit intervals) the amount of room for compromise would be reduced and more accurate
bit lengths required. The delay subroutine was used here specifically for learning about
serial communications but more accurate bit lengths can be generated by using the TMRO
or TMR interrupt resources. If propesly configured and programmed, the overhead code
needed for bit manipulation could be accomplished simultaneously while the appropriate
starting value is assigned to the timer resolrce register that is incremented to create the
desired bit interval. Additionally, the main program could be accomplishing other tasks
while also using the interrupts to manage the serial communicatiens. The code required
for the interrupt-based program architecture, however, 1s not as transparent as the code
used in the exercise here. Additionally, if the timing requirements are that critical, the
developer might consider using those MCU devices that have serial hardware resources to

save development time.

15-8 Chapter 15

Summary

Asynchronous serial communications involve sending data between devices
using a single data line. The advantages of using a serial communications protocal
is that only one pin resource is required and the data can be sent as needed without
regard for synchronization. The disadvantage is that timing is critical and that specific
data packaging criteria must be followed so that the data is received correctly. Those
criteria include the sequence that the data bits will be sent (MSB or LSB first), the
number of bits, the bit length (baud rate), if a stop bit is used and its duration, and if an
additional check sum bit (parity} will be used. This chapter focused on a common serial
communications protocol of a start bit, § data bits sent LSB first, no stop or parity bits,
and a baud rate of 9600 baud. Some MCU devices have dedicated hardware for handling
serial communications in parallel with other MCU operations. Other devices, such as the
PICI6F676 which is used for this text, require that serial communications be handled in
software and those techniques were detailed in this chapter,

Review Questions

15.1 In looking at the bitdelay subroutine in the example code, what value would be
toaded into the count variable to produce a delay appropriate for 2400 baud serial
communications?

15.2 What code adjustments are required if the data stream was increased from 8-bits to
16-bits? What else must be considered if there is a significant increase in the number
of data bits that are transmitted at one time (hint: think about the bit time interval
produced by the delay routines and the code overhead contribution to the delay)?

15.3 The MPLAB Simulator can be used to predict the length of a delay produced
by code, what other factor also contributes to these timing delays? How can you
determine the actual timing of a serial data stream?

15.4 What is(are) the ASCII code(s) required to send the number 127 to the LCD?

15.5 What is the code that you would send to the LCI to clear the display and move the
cursor to the upper left corner?

15.6 What adjustment to the exercise code would be required if the LCD used data sent
with the MSB sent first?

15.7 In the previous chapter on Interrupts, the temporary storage of the contents of the
w-register and the STATUS registers was emphasized. Why would that strategy be
important if the timer interrupt resources are used to generate the bit interval delays?

15.8 In the program exercise, the individual bit being sent was rotated through the carry

bit that is included in the STATUS register. What code alternative might be used to
determine the state of the bit to be transmitted?

Asynchronous Serial Communication 15-9

Serial Peripheral
Interface
Communications

Objective: To learn how to configure and use the resources of the PIC16F676 for basic Serial
Peripheral Interface Bus communications. This chapter will describe in detail the serial
programming techniques used in the SPI™ communications protocol to communicate with and
control external SPI based devices. The programming exercise will use the MCP41010 Digital
Potentiometer to practically illustrate SPI communications.

Reading: MCP4iXXX/42XXX Single/Dual Digital Potentiometer with SPI™ Interface Data Sheet,
pages 1, 6, 12-14 and 17-19.
Program: Program Files/Ch 1a6 Program/SPI

Alternative Serial Communication Protocol

This chapter covers an alternative serial communication protocol that allows for
duplex communications between a master and one or more slave devices. Though the
Motorola named Serial Peripheral Interface Bus (SPI) communications scheme may
not be an official industry standard, it is widely used. The SPI protocot requires up to
four signal lines between devices to make the communication connection versus the one
line required for asynchronous serial communications. These signal lines include a chip
(or device) sclect, a transmitting data line, a receiving data Jine, and a clock line. The
collection of the four signal lines make up the communication bus specified by SPI.

The MCP41010 Digital Potentiometer

The CS Line

The Clock

16-2

Chapter 16

The exercises in this chapter will use the MCP4 1010 Digital Potentiometer which uses
basic SPI communications for MCU control of the device. The digital potentiometer has an
internal wiper with 256 possible positions that taps a 10K Q resistor ladder. The position of
the wiper is dictated by the data byte that is shifted into the controlling register of the device,
and thereby setting the resistance at the wiper output pin between 0 and 10K €2 (in 256
steps). The resistance increment is approximately 44 € (but there is also some resistance
in the wiper connection itself, specified at 52). The device documentation details not
only the hardware specifications of the potentiometer but also details the hardware for
communication with the device. There are three required stgnal lines for controlling the
device; a chip select line, CS, a serial clock line, SCK and a serial data input line, SI. These
three lines will be connected to PORT IO pin resources on the PIC16F676. (Because the
communications with this particular device is one-way only, the fourth signal line specified
by SPIis not needed.) When selecting an SPI based peripheral device to be controlled by an
MCU, you must consider the signal line specifications of the device hardware.

The CS line is used to signal the external device that the clock and associated data on
the SI line are intended for the device. This allows single clock and data lines to be shared
with multiple devices (as long as those device pins are in tri-state when the device is not
selected, otherwise a digital high or low state would conflict with signals sent to parallel
devices). The documentation must be reviewed to determine if the device is setected
when the CS line is high or low — both arrangements are used by SPI based devices. In
the case of the MCP41010 device, it is selected when the CS line is low — the associated
clock and data lines go to tri-state when the CS line is high.

Next, you need to consider at what point during the clock cycle (either on the rising
or falling edge) that the data bit presented on the SI line is clocked into the data register

Sequence of Bits

of the device. The resting state of the clock, either high or low, also may be a factor. In
some devices, the data may be clocked-in on the rising edge of the clock, and clocked-out
on the falling edge, or vice versa. This arrangement allows for daisy-chaining devices.
For the MCP41010 device, the data is clocked-in on the rising edge of the clock signal.
The resting state of the clock signal can be either high or low, but this must be considered
in software to make sure that the first bit of data is on the data line when the first rising
edge of the clock occurs. In the sister device of the MCP41010, the dual potentiometer
MCP42010, the hardware alternatively allows for daisy-chaining devices and the data is
presented on the device data output Jine on the falling edge of the clock signal (so that the
data will be properly clocked in a second device by the master clock signal}.

Notice that there is no mention of frequency or period of the clock signal, there is
no baud rate to consider in SPI because the clock synchronizes and drives the process,
not timing. The only clock frequency specification that needs to be considered is the
hardware limitations of the MCU to produce a clock signal and limitations of the device
to respond to the clock signal. Often there are response time limitations that must be
considered. In the case of the MCP41010, the maximum clock frequency is specified at
10 MHz which is not a factor for the exercises in this chapter.

Finally, you must determine the sequence of bits that is required by the device, either
MSB or LSB first. In previous exercises dealing with the LCD, the sequence was LSB
first, in the case of the MCP41010 device, data needs to be sent MSB first.

MCP41010 Device Summary

In summary, for the MCP41010 device the resting state of the clock signal s low, the
device is selected when the CS signal is low, the data is clocked in on the rising edge of

the clock signal — MSB first

— and the data is latched into

the internal register of the
device when the CS signal

Figure 16-1 — Serial
Peripheral Interface (SPI)

ARRLOS41 Synchronous Serial Data

returns to high.
Load Project and
Parallax Serial LCD . o
§ T o Build Circuit
Hvag ves [——ry Load the project
21Ras Rao |2 Program Files/Ch 16
Ira¢ % ra1|2 l Program/SPI into MPLAB
e B ret Fot-Up P IDE. Build the circuit for the
5 e SR [10 I foll(zwmg EXETCISE as depicted
1 =5 ER in Figure 16-1 and 1llflstrz_1ted
7 8 - in Figure 16-2. The circuit
RC3 RC2 .
L |~ Pot-Down includes two push button
Hes = Vdd $ ’]: switches tied to PORTA
2 o 7 I/O pins that are configured
SCK g PBO ©
3 = 8 +
sl S PWO
‘i vss _ raof®

Link circuit diagram.

Serial Peripheral Interface Communications 16-3

as digital inputs with weak pull-up resisters
enabled. The LCD is connected to PORTA, 5. The
MCP41010 C8, SCK and SI pins are connected to
the PORTC /O pins 3, 4 and 5 respectively. These
pins are configured as digital output pins. The
TMRO resource is set up to generate a 1000 Hz
tone in the speaker. The speaker is connected to the
digital potentiometer wiper pin which acts ike a
volume control for the tone.

Observe the Program Code

Turn your attention to the program code as
it is being reviewed. The main program checks if
one of the push buttons is pressed (for increasing
or decreasing the volume). When one of the push
buttons is pressed, the TVWMRO interrupt is enabled
and the tone 1s generated. In addition, the data vaiue
that is sent to the MCP41010 that sets the volume
is either incremented or decremented as long as the

= button is pressed. The combined write command

Figure 16-2 —The SPI Project. and data bytes are sent via the SP1 subroutine to

main_loop
btfss
goto
btfss
goto
goto

up_volume
mov1w
movwt
bef
bstf
bsf

repeat_up
inct
btfsc
dect

16-4 Chapter 16

change the potentiometer and tone volume,
The Initialization section of the code should be familiar to you already. Scroll down
10 the main part of the program. The first lines of code set up the TMRO register, SETS
the CS line to disable the MCP41010 chip, CLEARS the SCK line, the resting state of the
clock and sends some labeling text to the LCD. The main_loop section of the program
reads the state on pins connected to the push button switches and jumps to the appropriate
label to service the pin that is pressed:

PORTA, up
up_velume
PORTA, down
down volume
main_loop

We’ll take a look at only the up_volume routines because both are similar, The
portion of the code below sets up the TMRO resource for interrupts to generate the
1000 Hz tone.

TMRO_scale
TMRO
INTCON, TOTF
INTCON, TCIE
INTCON, GIE

The repeat_up loop increments the data value that sets the potentiometer wiper position.

volume, £
STATUS, Z
volume, £

The Command Byte

The btfsc opcode checks to see if the volume variable overflowed to zero when

it was incremented. If an overflow occurred, the variable is decremented to keep it at a
maximum of 255. Without this step, the volume of the tone would loop through the full
volume range going up. There are a few lines of code that send the value of the volume
data byte to the LCD for display.

The data sent to the MCP41010 is 16 bits, or 2 bytes in length. The first & bits make

'

Reaset bit counler

movhy .8
movwi bit_counter

Command
Byte

moviw Byte

CSS8ET

bsf PORTC, 4

Byte-to-send

mowwi byte to_send

call nextbit (loop)

Resel bit counter

movlw _8
movwl bit_counier

Data Byte

moviw Byte

Byle-lo-send

movwi byte to_send

1
call nextbit (loop)

B

— nexdbit [foop)

I

Assume CLEAR dala
bit

cf PORTC. 5

Rotate MSE left into
carry bit

rIf byte_lo_send.f

C CLEAR or SET7?
bifsc STATUS.C

SET dala bil

bsl PORTC.5

Pulse Clock
bsf PORTC,4
bel PORTC.4

No Decrement
bit_counler, is it zero?

decisz bitcounter,|,

<S8 Sat

bst PORTC, 3

retum

Y

ARRL0O342

Figure 16-3 — Code Flow Diagram.

up the command byte. In this simple device, there is only one command byte — (o

write a data byte thal sets the wiper position
on the potentiometer. The bit makeup of
command byte can be found in the device
documentation. The command byte to write
to data to the MCP41010 is b’ 00010001".
Any other command byte will be ignored by
the device. The data byte that deterinines the
potentiometer wiper position then follows the
command byte with the MSB sent first. For
instance, to set the potentiometer wiper to
the center position with a resistance of 5 k€2,
the data byte would be 128 (b’ 10000000),
which 1s V2 of 255 — the top position on

the resistance ladder. The data stream that
includes the command and data bytes would
be b’ 00010061 10000000 . The device
must receive all 16 bits or the command is
discarded. Continue to scroll down through
the code to see how this is done. While you
are reviewing the code, take a look at the code
fiow diagram in Figure 16-3.

The bef command sets the CS line low to
signal the MCP41010 that is being addressed.
The mov 1w instruction leads the bit pattern
H700010001" into the w-register. This bit
pattern was defined and assigned to the label
pot0 in the definition section of the code. The
command byte is passed to the spi subroutine
through the w-register.

bef PORTC, CS
movlw pot0
call spi

Serial Peripheral Interface Communications 16-5

spi
movwi
movlw
movwf

trans_loop
bef
rlf
btisc
bsf
bsf
bcf
decfsz
goto
return

moviw
call
bsf
bifss
20t

bef
bef
bcf
goto

16-6 Chapter 16

Scroll down to the spi subroutine, this is where the SPI communication work is done:

data to send
.8
bitcounter

PORTC, 51
data_to_send, £
STATUS, C
PORTC, SI
PORTC, SCK
PORTC, SCK
bitcounter, £
trans_loop

The byte to be sent is transferred from the w-register into an intra-loop working
register data_to_send. The bitcounter variable is loaded with the number of bits to be
sent. The bit to be sent is assumed to be CLEAR by using the bcf opcode. The first bit
(MSB) to be sent is rotated left out of the data_to_send variable into the STATUS, C
bit with the r1f instruction. Note that in the previous chapter on asynchronous serial
communications, the data was sent LSB first which required that data rotate right into the
carry bit. The carry bit is checked, and if CLEAR, the next instruction is skipped. The SI
line is now in the corresponding state to the bit being sent. The SCK line is toggled high
then low to latch the bit into the MCP41010 data register on the rising edge of the clock.
The bitcounter is then decremented and checked if it is zero, if not, the loop continues to
send the next bit, when done, the control of the program returns to the calling code.

The volume data byte 1s then loaded into the w-register and it is passed to the spi
subroutine for transmission.

volume

spi
PORTC,CS
PORTA up
repeat_up

INTCON,GIE JAf all done, disable tone
INTCON, TOIE

INTCON,TOIF

main_loop

The bsf command SETS CS to signal the MCP41010 (o set the potentiometer wiper
and await further commands. The state of the push button is checked with the bt fss
command. If it is still pressed (CLEAR) then the volume up process is repeated. If the
button is released (SET) then the tone is turned off by disabling the TMRO interrupt and
the main program loop continues.

On a side note, scroll down into the LCDQutput subroutine. This is the routine that
sends the characters to be displayed on the LCD via seral communication. You have
studied this subroutine in the last chapter, but notice thar in this version of the subroutine,
instead of calling another subroutine to generate the bit time interval delay for 9600

baud transmission, the delay code is included in two locations within the subroutine,
which seems a little inefficient. It is, but it also is required to work around the limitation
imposed by the 8-level Stack in the PICT16F676. When the bit delay code is called as a
subroutine, the Stack overflows and corrupts the program counter upon return from the
subroufine and the program crashes. Imbedding the delay code within the LCDOutput
subroutine prevents the Stack from overflowing. This is one thing to keep in mind if your
programs crash even though they seem to work just fine when testing them in MPLAB
Simulator. It is easy to over use nested subroutine calls and quickly overwhelm the Stack.
It is time to load the program into the PICI6F676, install it in the circuit, and power
it up. The LCD should display the starting POT setting of 128. When you press the
UP button, the tone will start and the volume will increase from the mid-volume to the
maximum, coincident with the increasing POT setting number. Release the button and
the tone will stop. Press the DOWN button. The tone will come on again and the volume
will decrease from the previous setting to the minimum volume. This is similar to the
operation of the volume controls of most modern electronics.

Summary

SPI techniques allow the user to serially pass information between a master
device and multiple slave devices in both directions without regard to stringent timing
specifications. The tradeoff when compared to asynchronous serial communication
techniques is that it can take up to four signal lines to control the flow of data. In
this chapter, a simplified, simplex (one direction), form of SPI was used to study the
technique that required only three signal lines between the MCU and an MCP41010
Digital Potentiometer. Those three lines included a chip select line (CS), a clock line
(SCK) and a data line {(SI). In SPI, the CS line is CLEARED to gain the attention of the
slave device, the command and data bytes are applied to the SI line.one bit at a time (in
proper sequence: MSB or LSB first), the clock is toggled to latch the data bits into the
slave device’s data register and finally the CS line is SET to cause the command to be
executed by the slave device.

Review Questions

16.1 List the advantages and disadvantages of each serial communication technique
(Asymmetrical and SPD).

16.2 If one SPI device needs a CLEAR CS line and another SPI device needs a SET CS
line to operate, can these two devices share all three signal lines (CS, SCK and SI)?

16.3 If the wiper resistance in the MCP41010 is specified to be 52 €2, what resistance
would you expect when you command the wiper position to b/ 0000000077

16.4 What line(s) of code would need to be changed if the attached SPI device required
commands sent in LSB first format?

16.5 For the sake of code clarity, you decide that you would like to treat the command
byte and the data byte as a single 16-bit variable with the labels dataH and datal.
To do so, write an amended SPI subroutine that would send all the data bits in one
subroutine instead of two passes through one subroutine as was done in this exercise
(once to send the command byte and then again to send the data byte). Hint: look
to see how this was done in the b2_BCD subroutine {binary to BCD conversion
subroutine), loop16 loop.

Serial Peripheral Interface Communications 16-7

AT

Working

With Data

LED Display Unit

Objective: To leamn how 1o configure and use resources of the PIC16F676 to drive a 7-segment,
single digit LED display and to use a data table within software to drive the display to generate

numerical digits.

Reading: PICI6F630/676 Data Sheet, page 85 and Single Digit Display Data Sheet 335090.
Program: Program Files/Ch 17 Program/7_Segment LED.

The interface between the MCU device and the user is very software intensive and
requires a lot of hardware resources. In previous programming examples, you have used
serial communications techniques and data tables to display prompt messages on an
LCD display. In this chapter, a technique to use data tables to generate numerical digits
displayed on 7-segment LED displays will be explored.

A T-segment LED display unit contains 7 LEDs arranged so that when the individual
LEDs are turned on in the proper arrangement, a numeric from 0 through 9 is formed
on the display. The display units come in two basic forms, commeon anode and common
cathode. Regardless of the type of display. these units require a minimum of 7 MCU
IO resources to form the numbers {additional /O resources if decimal point LEDs are
required). More than one display unit can be multiplexed to increase the digit count (for
instance four 7-segment LED display units to form a clock), but this would require an
additional /0 pin tesource for each digit, which could quickly limit the number of digits
that could be handled by a single MCU device.

Anode Display and Cathode Display

In a common anode display, a single current source is required — the MCU /O
resources are used to provide the ground path for the individual LED segmeunts by
CLEARING the /O pin. In a common cathode display, a single ground is required —
the MCU I/O resources are used to provide the current source for the individual LED
segments by SETTING the I/O pin. There are advantages and disadvantages to each
configuration. Regardless of the configuration chosen for the display unit, consideration
must be given to the current handling capabilities of the MCU individual I/O pins as well
as the total current handling of the device. For the case of the PICL6F676, the maximum
source or sink current handling capabilities of the individual pins is 25 mA and a total
current for all I/O pins combined is 200 mA.

The Use of 7-Segment LED Displays

17-2

Chapter 17

We are going to demonstrate and explore in this chapter the use of 7-segment LED
displays with only a single digit. Build the circuit as illustrated in Figure 17-1 and
Figure 2. The display unit used in this circuit is a common cathode type. The PORTA
and PORTC I/O pins connected to the individual LEDs of the display provide the current
source through current limiting resistors. The approximate current required for each LED
can be estimated by the use of Ohms law. The voltage provided at the I/O pin is 5 V. The
current through the current limiting 470 € resistor would be approximately 0.01 A (5 V/
470 €2 =0.011 A). This value is well within the specified current Jimits for the individual
I/O pins of the PIC16F676 (25 mA) and also well within the total current handling
capacity of the device (200 mA). If higher current handling capacities were required,
transistor switches could be employed.

ARRLOS48

Vdd
RAS
RA4
RA3
RCS

919491 31d

All
Resistors
470 Q

Survey of Contents of Table 17-1

Review the contents of Table 17-1 which lists the sequence in which the individual
LEDs of the display unit need to be illuminated to form the desired number digit. The
individual LEDs are labeled A thorough G. Reviewing the data sheet for the display

Figure 17-1

1]

Figure 17-2

Table 17-1

7-Segment LED Truth Table

Digit G

QOO DHWN=Q
[e R G R B o

PORT# RC3
bit
Pin# 7

F E
1 1
0 0
0 1
0 0
1 0
1 0
1 1
0 0
1 1
1 0
RC2 RC1
8 9

mo-—ko—-&-&o-—k—&o_l.o

9]
S

—
o

9!

I I =

o I o Y "

z

—_
=}

jJ_L_L-.L_L_LO-ﬁ_LO-—AL

b
(=]

—
w

Decimal
63
6
91
79
102
109
125
7
127
103

unit will tell you the specific

pin connected to the individual
LEDs. The bottom rows of the

table identify the PIC16F676 1/0
resource and physical pin connected
to the individual LEDs. The left-
hand column lists the number to be
displayed. The columns below the
letter designator for the individual
LEDs list the state applied to the
connected /O resource 1o generate
the number. A “1” applied to an
LED would apply 5 V to that LED
and it would dluminate. Conversely,
a “0” would ground the LED

and keep it off. The column on

Working With Data 17-3

Project

174

table get
addwft
table dt

the far right lists the decimal value that equals the binary representation of the 7-bit bit
pattern required to generate the number displayed. The right-hand column will be used
in the data table in software that will be called to generate the numbers displayed on the
7-segment display unit.

Load the project Program Files/Ch 17 Program/7_Segment LED into MPLAB
IDE and display the .asm f£ile contents while we explore the code. Scroll down to the
bottom of the code in the subroutine table_get that includes the data table labeled simply
“table.”

PCL,f ;add the offset to the program counter to jump to character
.83, .6, .91, _.7%, .1¢z2, .lo09, .125, .7, .127, .103

The data table is formed by the use of the dt directive. Recall from Chapter 7 that
the 4t directive generates a series of ret 1w instructions in a data table that will load
the w-register with the 8-bit value of the offset argument and return that value in the
w-register o the calling program code when the ret 1w opcode is executed. The offset for
the desired value in the data table is added 1o the low byte of the program counter which
causes a jump to the desired value and the ret 1w opcode is executed: For example, if the
“9” digtt is to be displayed, the value of 9 is added to the program counter with the addwf
PCL, f instruction and a jump is made to the 10th position in the data table (remember
to start counting from 0). This generates a retlw with the w-register loaded with the
literal decimal value 103.

Scroll up to the main part of the program.

main
movlw
movwE

next count
deci
moviw

call

movwi
andlw
movwE
rrf
rrf
rrf
moviw
andlw
movwE

Chapter 17

.10
counter

counter
counter

table get

Here the starting value is loaded into the variable counter which will be used to count
through the digits 0 through 9 for display. The starting value of 10 is loaded the first time
through because the counter is decremented within the loop so the first digit displayed
will be 9, not 10. Within the next_count loop, the value of counter is decremented and
loaded into the w-register before the call table_get instruction is executed to retrieve the
desired bit pattern to generate the number digit.

temp

b 00000111 ;mask upper 4 bits
PORTA

temp, £ ;ehift out lower 3 bits
temp, £

temp, £

temp

b/ 00001111"

PORTC

call

movt
btfss
goto
goto

walitlsec

Upon retumn of the program execufion to the main program with the bit pattern in
the w-register, the bit pattern is stored in a working variable [ocation labeled temp. The
hardware connections between the MCU and the LED display are set up so that PORTA
pins RAQ, RA1, and RA2 are connected to LED segments A, B, and C respectively. To
extract the bits for LEDs A, B, and C, the andlw opcode is used to mask those bits and
convert all the other bits to zero before the bit pattern is loaded into the PORTA register to
illuminate the appropriate LEDs. The three rrf opcodes rotate right the bits for LEDs A,
B, and C out of position and the bits for LEDs D, E, F, and G into the lowest nibble of the
byte temp. The contents of temp is then loaded into the w-register and the andlw opcode
is used to mask the lower 4-bits and convert all the other bits to zero. This bit patiemn is
then loaded into the PORTC register to illuminate the appropriate LEDs to complete the
number to be displayed. A delay of 1 second is then executed to give time for the number
to be displayed before the next digit is displayed.

countexr
STATUS, Z
next_count
main

By simply moving the contents of counter back into counter, you can check if the
value of counter has been decremented to zero. The bt £ss opcode skips the next opeode
in code if the value of counter is zero and the main program repeats. If counter is not
zero, the next digit to be displayed is generated by the next iteration of the next_count
loop.

You can confirm the operation of the code by using the MPLAB Simulator and the
WATCH window.

Build and Load the Program

Summary

Review Question

Build and load the program into the PIC16F676. Install the device in the circuit and
apply power. The 7-segrment display will count down the digits from 9 through 0 and
repeat the process until power is removed.

User interfaces with MCUs are software and hardware intensive. The use of data
tables can reduce the amount of software overhead required to display messages or in this
case to display a digit on a 7-segment LED. There are two kinds of 7-segment displays,
common anode and common cathode. The user needs to consider the total current
handling capacity of the MCU. The dt directive is used to create what is essentially a
table of retlw opcodes that will load the w-register with the table entry and return to
the calling program with the w-register intact. By adding an offset value to the program
counter inside the data table subroutine, jumps to the desired data entry in the table are
executed.

17.1 Explain how you could muluplex four 7-segment display units to display all digits
at one time. Draw a circuit diagram for the required circuit. Can this be accomplished
with the PICI6FG76 device?

Working With Data 17-5

s i
B AT

Wiy,.“.._.M

ol

P

o
LA

ing it All

Putt

Together

Objective: To present a practical application that utilizes many of the software techniques used
throughout this text. The culminating project is a Morse code electronic keyer.

Program: Program Files/Ch 18 Program/Keyer

Putting New Knowledge Together in a Final Project

You have come a long way during this joumney to learn the basics of MCU
programiming. It is now time to tde many of the bits and pieces together in one
culminating project to illustrate how you can develop your own PIC-MCU based project.
The final project is a Morse code electronic keyer. You may or may not be a ham radio
operator or interested in communicating with Morse code, regardless, the programming
fundamentals and the use of the PIC16F676 resources is the real purpose of the project.

Morse Code and Keyers

Morse code is one of the first means of communication by electronic digital
technology. The characters of the alphabet, numbers, punctuation and a few procedural
signs are formed by a series of dit (dots) and dashes (dahs) that are transmitted by some
medium between the sender and receiver. The basis of Morse code is the time length unit
of the dit. The dash has a length of three dit time units. The time space between the dits
and dahs that make up the character “byte” is one dit time unit. The tiine space between
characters within a word ts three dit time units (or one dah length). The time spacing
between words in a sentence js seven dit time units. Morse characters can be formed by
a hand key or switch that is tuned on by the operator with the appropriate on and off-
time. There are a number of mechanical and electronic devices that can be employed to
assist the operator in making the Morse characters. These devices are mainly emptoyed
to improve the quality of the characters being sent, increase transmission speed or reduce
operator fatigue. One such device is an electronic keyer. The electronic keyer has two
input switch connections, one when closed will send a series of dits and the other that
will send a series of dahs. The operator manipulates these switches alternately to form the
Morse characters of dits and dahs. The electronic keyer is an excellent candidate for an
MCU based project.

MCU Resources Needed for This Project

18-2

Chapter 18

The first step in developing this project is to determine the MCU resources needed
for the kever while documenting the interconnections between components on a circuit
diagram. For the keyer project:

a. Two input assigned I/O pin resources with weak pull-up resistors are required for
the dit and dah switches.

b. One output assigned I/O pin resource is required to drive a transistor switch and
indicator LED to actually key the transmitter equipment.

c. Another output assigned I/O pin resource is required to drive another transistor
switch and indicator LED to enable or turn on the transmitter equipment to put it in the
transmit mode — this is generally called the push-to-talk (PTT) line.

d. One output assigned I/O pin resource connected to a speaker is required to develop
an audible tone that will provide Morse code feedback to the operator.

e. One ADC resource that is connecied to a variable resistor that will allow the
operator to control the dit time base unit length by varying the voltage on the ADC pin.

f. Finally, the TMRO resource will be used to generate a 1000 Hz side tone to make

the Morse bits audible, and the TMR] resource will be used to hoid the transmutter PTT
line on for a specified period between Morse characters.

The Electronic Keyer Circuit

The circuit diagram of the electronic keyer with this resource configuration is
depicted in Figure 18-1.

Buiid up this circuit on the prototyping board or if you have purchased the associated
kit of parts for this text, the circuit can be built on the circuit board provided. Refer to
the construction manual for this circuit board in Appendix C. The components for this
project have been used in the circuits presented in the exercises throughout this text. Next
load the project Program Files/Ch 18 Program/keyer into MPLAB IDE. View the
contents of the code in the keyer.asm file for the following discussion of the application

code.
7805 ARRLO548
S EEEE K
+ \O—' = o
av —l:O g | o001 L
e 2 uF
71 pa e 1 vag Vs |14
2 13 —— oit
o RAQ -
3) 12 —1L Dah
volume —|RM O RA1 o ©
Control 4 RA3 % RAZ | 11 77
2lrcs S Reo| ——§1° Speed
2N3904 p g 10K ontra 2N3904
RC4 RC1—

o— 4700 4700 7 s 4700 4700 T —=0
/| RC3 RC2 AAA, I
y A

r Key
1N914 ,J7 \:‘ /‘J7 1N914
77

Figure 18-1 — Keyer Schematic

Putting it All Together 18-3

Discussion of the Application Code

Scroll down to the device initialization section of the code. You now should be able to compare
the initialization code instructions to the listing of resources required above.

Init

BANKSEL Bankl

call OX3FF ;retrieve factory calibration value

movwi OSCCAL

BANKSEL Bank0 rselect bank0

clxf PORTA ;clear port bus

clrf PORTC

movlw b’ 00000111 ;comparator disconnected, low
;power state

movwE CMCON

movlw b? 11000000’ ;globals enabled, peripherals
;enabled, TMRO disabled

mOvWE TNTCON

movliw b’ 00010001 ;ieft justified, vdd ref, RCO has ADC, ADC
;Stop, ADC turned on

movwi ADCONO

movlw b 00110001 ;TMR1 prescale 1:8, internal clock, TMRL ON

movwi T1CON

BANKSEL Bankl ;select bankl N

moviw b"00000001" ;TMRO set-up: pull-ups enabled,X, internal
;clk, X, pre-scale tmr0, pre-scale 1:2

movwi OPTION REG

movlw b’ 00010000 ;Fosc/8 for ADC

movwt ADCON1

movlw b’ 00000011 ;RAD and RAI as input for paddle RAZ

movwi TRISA ;program PORTA

moviw b*00000011" ;weak pull-ups on RAC, RAl

movwf WPUA

moviw b* 00000001’ ;RCO input for ADC

movwi TRISC ;program PORTC

movlw b’ 00016000 ;RCO analog, all other digital

movwE ANSEL

movlw b’ 00000001 ;TMRL interrupt enabled

movwi PIE1l

BANXSEL Bank0 ;back to bank(

clrf PORTC

Code for Closing the Key Switches

Scroll down to the main section of the code. Here you will find the code that we will monitor for
the closure of the key switches and take appropriate action through subroutines.

get_key loop

movE PORTA, £

btfsc STATUS, Z

goto iombic ;use goto's here to aveid overwhelming
;limited stack space

btfss PORTAR, O

goto send dits

btfss PCORTA, 1

goto send_dahs

goto get_key_ loop

18-4 Chapter 18

The first opcode movE simply takes the contents of the PORTA register and loads in back into
itself. but during the process, if the PORTA register is zero (both the dit and dah switches are
closed) the STATUS, Z flag is SET and a jump to the iambic subroutine is made. If the PORTA
register is not zero, then the individual switches are checked for closure and appropriate gotos are
executed. As indicated in the comments, gotos are used instead of calls to avoid Stack overflow.

Set Up of Timer Resources for Sending Dit

The two timer resources are set up to generate the 1000 Hz tone (TMRO0) and to generate the time
interval that will hold the transmitter on (the PTT line) between characters. The voltage applied to
the ADC resource will be used to determine the length of the dit delay. These timer resources are
configured to generate interrupts and the individual interrupts are enabled as required within the
subroutines. Scroll down to the send_dit subroutine.

send dit
bsf PORTC, PTT ;turn on PTT
bsf PORTC, key ;close key
clrf TMR1H
cirf TMR1L
bcf PIR1, TMR1IF
bsf T1CON, TMR1ON
bef INTCON, TOIF
bsf INTCON, TOTE .
goto S+2 iskip over the bef PORTC,key line
send_space
bet PORTC, key ;open key
call get_adc
clrf h byte
movwi dit count low
dit locp
;delaylmS ;delay routine contained here instead of
jusing a called subrcutine to avoid stack
;overflow issues
movlw .188
movwf countl
nep
goto S+1
goto S+1
dlylms1
goto S+1
decfsz countl, £
goto dlyimSl
decfsz dit_count_low, f
goto dit loop
bct INTCON, TOIF
bef INTCON, TCTE
return

When a dit is sent, the transmitter is put in the transmit mode by causing the switching transistor
to conduct and ¢lose the PTT control of the transmitter by SETTING the RC3 pin and then the key
line 15 also switched on by SETTING the RC2 pin. The TMRI associated registers and flags are
set up for a time interval interrupt to keep the transmitter PTT line on between Morse characters
and TMR1 is enabled. Similarly, the TMRO resource is also set up and enabled and the audio tone
begins. Because the dit and space between bits of the Morse character are the same time interval,
the same time delay code is used for both. However, during the dit time interval the transmitter

Putting it All Together 18-5

needs to be keyed, during the space time interval the transmitter needs to be un-keyed. The
instruction goto $+2 skips over the instruction that un-keys the transmitter during the dit time
interval. The call get adc subroutine retrieves the left justified ADC value that is determined by
the setting of the variable resistor connected to the ADC resource. This value then is used to
determine the number of iterations that the 1 ms delay loop is executed (nested loops) by the use
of the dit_count_low counter variable. The area of the code labeled delayims should look
familiar to you. This is the same code that generally is contained in the delay library of code. To
avoid issues with Stack overflow, this delay code is included in the main body of the program code
to avoid having to use subroutine calls to access the code. In this project the overall length of the
program code is not restrictive. Once the dit delay is completed, the tone is stopped by disabling
the TMRO resource. If the dit ime interval was intended to be the space between bits of the Morse
character, the transmitter key line would need 10 be switched off. This is accomplished with the
instruction bef PORTC, key (that you will recall is skipped with the vse of goto $+2 in the dit
time interval use of this code).

Sending the Dah

18-6

The same basic code sequence is used when the dah is being sent, however, the dah is three imes
the length of the dit time interval so code needs to be added to the dah sequence to increase the
time interval by a factor of three. Scroll to the send_dash subroutine and take note of the section of
that code labeled x3 (for times 3).

x3

moviw 1 byte ;store a copy of the low byte in temporary
;variable dash

movwE dash

bef STATUS, C ;make sure the carry bit is clear

rlf dash,w ;multiplying by 2 with overrun in carry bit

rlf h_byte ;multiply by 2 with carry bit placed in LSB

bef STATUS, C ;make sure the carry bit is clear

addwf 1 byte, f ;add in the original low byte to make times 3

btfsc STATUS, C ;check if there was a carry, if not skip the
;increment of the high byte

incf h_byte

This section of the code takes the dit time interval as determined by the setting of the variable
resistor and retrieved by the get_adc subroutine and multiplies it by three. This is accomplished by
multiplying the value by two and adding the value to the product. The r1£ opcode multiplies the
value by two (with any carry loaded into the h_byte through the STATUS, C bit). The original
ADC value is then added with addwf and again, any carry that results from this operation is added
to the h_byte variable. This value, now three times the value required to generate a dit time
interval, is used in the nested delay loop to generate the dah time interval.

Chapter 18

Seroll to the interrupt_service subroutine section of the code.

interrupt_service

movwE
swapf

movwi

btisc
goto
bef
movlw
novwi
movlw
xorwi
bet
goto

w_temp
STATUS, w

status_temp

PIR1,TMR1IF

PIT sexvice
INTCON, TOIF
TMRO_scale

TMRO

b’ 00010000’
PORTC, £

INTCON, TOQIF
return_interrupt

;copy w reg intc a temporary variable

;using swap here because it does ncot affect

; STATUS

;copy swapped STATUS into temporary
;variable

;check if TMR1 caused interrupt

;if so, turn off PTT

;clear TMRO interrupt

;reset TMRO scaling

;5et up to toggle RC4

;elear TMRO interrupt
;to not affect TMR1 and the PTT line

The first part of the code that stores the contents of the w-register and the STATUS register should
look familiar to you. There are two interrupts enabled in this application. The btEse PIRI,
TMRI1TF instruction is used to check the TMR1 interrupt flag to determine if the interrupt was
generated from TMRI. If not, the interrupt, by default, must have been generated by TMRO. I the
interrupt was from TMRO, the code toggles the /O resource that drives the speaker to generate the
tone and the TMRO resource is reset for the next interrupt. If the interrupt was generated by
TMR1, then the PTT line needs to be serviced.

PTT gervice
btfsc
goto
bef
bet
bef

movilw
movwl

reset PTT
movlw
xorwf
btiss
bsf
bet

PORTC, key
reset_PTT
PORTC, PTIT
T1CON, TMR1ON
PCRTC, 4

b 010000G00¢
INTCON

brooooogll”
PORTA, w
STATUS, Z
PORTC, PTT
PIR1, TMR1IF

;oalled when PPT time is expired
;1f key is still down reset PTT

;turn off PIT
;turn off TMR1

;make sure speaker I/0 line is low to reduce

;current consumption

;allow peripheral interrupts from TMRL

;jclear TMR1 interrupt flag

In the TMR1 interrupt service section of the code, the state of the transmitter key line is checked.
if the key line is closed the PTT line needs to be maintained in the closed state also and the TMR 1
interrupt is reset. If the key line is open (turned oft), then the PTT line is opened because the
specified time interval has expired (by virtue of the interrupt). The TMRI1 interrupt is disabled
until the next time either the dit or dah switch is closed. The interrupt_service routine is closed by
returning the w-register and STATUS register to their pre-interrupt values and the enabled
interrupts are globally enabled with the retfie opcode.

Putting it All Together

18-7

18-8

The last section of the code to be discussed is inside the get_adc subroutine.

get_adc
bsf ADCONO, GO ;set GO bit to begin ADC conversion
wait ADC
btfsc ADCONQ,NOT DONE ;check if BADC complete (cleared
;bit)
goto wait ADC ;1f not, loop and wait until clear
movlw .252 ;low side limit for resistor value
subwf ADRESH, w
btfss STATUS, C
goto check low limit
movlw .252
movwE 1 byte
return
check low limit
movlw .24 ;high side limit for resistor value
subwi ADRESH, w
btfss STATUOS, C
goto exit ADC
movEiw ADRESH
movwi 1_byte
return
exit_ADC
movlw .24
movwE 1 byte
return

Only the top 8-bits of the 10-bit ADC value are used to determine the dit tirne interval. The lower
2-bitg are truncated by using the left hand justification of the ADC registers and loading the top
8-bits into 1_byte and clearing the value in h_byte. The first part of the code loops until the ADC
conversion is completed. [t was found throngh experimentation and development of this project
that the highest and lowest values of the ADC were nof usable for generating Morse code,
consequently, a software trap was developed to eliminate those ADC values above 252 and those
below 24. For those values above 252, the literal 252 is subtracied, using subwf, from the ADC
value in ADRESH. If the result does not generate a carry (the value of ADRESH is less than 252)
then the low Limit is checked. If the result generates a carry (the value of ADRESH is greater than
252) then 1_byte is loaded with 252. Similarly, the low limit is checked by subtracting the literal
24 from the value of ADRESH and the appropriate value is feaded into |_byte. If you are going to
use a similar technique in your own code, you can use MPLAB Simudator and the WATCH window
to view the operation of your code to ensure you get the outcome that you expect.

In operation, when you close the dit switch, a string of dits will be generated. You will hear the
audio tone of the dits. The PTT LED will illurminate indicating the transmitter is enabled, and the
KEY LED will flash in step with the dits being sent. Likewise, closure of the dah switch will
generate a series of dahs. When the switches are opened, the PTT LED will extinguish a moment
later putting the transiniiter in the stand-by mode. Closing both the dit and dah switches at the
same fime will generate a series of altenating dits and dahs. The Morse operator uses a
mechanical switching device called a paddle that is connected to the dit and dah lines of the
electronic keyer. The paddle is set up for side to side movements with the fingers to close the
switches. To generate the fetter “A” for instance (dit-dah), the operator would momentarily close
the dit switch with a thumb movement, and then momentarily close the dah switch with the
pointing and middle finger movement. The electronic keyer will keep track of proper dit interval

Chapter 18

tming and make sure that the transmitter controls are on and off at the proper time intervals. To
generate the letter “B” (dah-dit-dit-dit), the operator would momentarily close the dah switch and
then hold the dit switch closed for a long enough time to generate a series of three dits.

Conclusion

You have come a long way in this joumney to learn more about MCU programming,
and that journey has only begun. Now that you have the basic tools you need to tap into
the power that these common yet very powerful devices have to offer, it is time for you to
experiment and develop your own application. The real learning comes from adapting the
MCU to accomplish a task that you dictate.

The next leg of your journey begins by dividing your intended project into simple,
individual rasks that need to be accomplished to reach the end goal. Then match the
available resources of the MCU device to those individual tasks and illustrate the
connecting bits and parts needed to interface the MCU to the outside world in a circuit
diagram. Then armed with the resource listing and your circuit diagram, it is time to
develop the program code to accomplish each task (or step). Begin your code by defining
constants and variables. Next, write the code to configure the resources of the MCU
to meet your needs. When you write the “meat’ of your code, try to use subroutings to
accomplish the individual tasks if possible. This will make your code casier to debug and
also make it more readable. Get the individual subroutines to work to your satisfaction
and then move on. The main part of your program is then simply a matter of calling upon
the subroutines to take you from point A to point Z of your application journey.

Review Questions

18.1 How can you customize the keyer project to include a start-up sequence of Morse
code characters, for instance to send “HI” or send your ham radio call sign? Consider
if you want this start-up sequence to be transmitted over the air waves or not.

18.2 Develop circuit and software changes to automatically send common Morse code
sequences like sending CQ calls.

18.3 Develop circuit and software changes to add a power-on LED to the project.

18.4 Develop software changes that will increase or decrease the amount of time the PTT
line is held closed after the last Morse character is sent.

Puiting it All Together 18-9

Glossary

ASCII — American Standard Code for Information Interchange is a numerical based code used to
represent text in computer equipment, and other devices that work with text and/or display text.
ASCTI includes definitions for 128 characters: 33 are non-printing, that affect how text is
processed: 94 are printable characters; and the space character.

Assembly — Language. Assembly is a low-level programming language that is based on
mnemonics that represent instructions or opcodes. The use of mnemonics helps to make the code
more readable. The instructions authored in assembly are then assembled, compiled, or translated
into machine language, which is the program in a sequence of binary code that is actually run in
the microcontroller. High-level languages such as C++ or PASCAL are used for writing more
complex programs to perform larger tasks. The use of high-level languages is much easier.
Programs written in high-level code also need to be compiled.

Asynchronous Serial Communication — Asynchronous describes a serial transmission protocol
that requires that a start signal is sent prior to each byte, character or code word and a stop signal
is sent after each code word. The use of asynchronous serial communication does not require that
clocking of the sending and receiving devices be synchronized, which means that data
transmission can occur at any time. This scheme then requires that some part of the protocol is
used to signal that data 1s being transmitted. The start signal serves to prepare the receiving
mechanism for the
reception of the

High

Low

104 ps 104 us data bits that

-~ ™ o follow. The stop
| [1]2]a]4]s]e]7][a]” | [tlzlsjalsiairisl- signal signals the
r T 1T 11111 . -

Data Bits

recejving device
to reset in
ARRLO511 preparation for the

Start bit
(rest high)
Start bit

A-2

next byte.

In the above diagram, a start bit is sent, followed by eight data bits, no parity bit and one stop bit,
for a 10-bit character frame. The number of data and formatting bits, and the transmission speed
are specific 1o the device. After the stop bit, the line may remain idle indefinitely, or another
character may unmediately be started.

Opcode — An opcode (operational code) is the portion of a programming instruction that
specifies the operation to be performed. The opcode, in combination with the oprand, make up the
programming instruction.

Oprand — An oprand is the portion of a programming instruction that is changed, modified, or
provides argumnents tor action upon by the opcode. Oprands may include constants, register or
memory Yocations, values stored in memory locations or registers, or I/O port pin assignments.

Microcontroller or MCU — A microcontroller or MCU is -2 functional computer system-on-a-
chip. An MCU has a central processing unit (CPU), a small amount of RAM memory,
programmable peripherals, and input/output pins (I/O). MCUs are used in automatically
controlled products and devices, such as automobile engine control systems, remote controls,
office machines, appliances, power {ools, and toys.

PIC® — PICs are a family of Microchip Technology microcontroller products. The term PIC is a
registered rademark of Microchip; however, the term is frequently used to refer to generic

- microcontroller devices. PIC has also referred to Programmabtle Interface Controller, Peripheral

Appendix A

Interface Controller, and Programmable Intelligent Computer. In this text, the use of PIC will be in
reference to the Microchip family of microcontrollers.

SPI™ — Serial Peripheral Interface is a communication protocol that allows devices to
comnmunicate using a master/slave relationship, in which the master initiates the data frame. When
the master generates a clock and selects a slave device, data may be transferred in either or both
directions simultaneously. SPI specifies four signals: clock (SCLKY); master data output, slave
data input (MOSY); master data inpui, siave data output (MISO); and siave select (CSS).

Glossary A-3

Answers

Chapter 2 — Inside the PIC16F676

2.1 What is the physical pin assigned to PORTA RA3?
Answer: Pin 4

2.2 What 1s the purpose of the comparator moduie?

Answer: To corapare the relative voltage magnitudes on two pins RAQ and RA| or
physical pins 13 and 12. The output of the comparator can be programmed to be put on
pin RA2 or physical pin 11.

2.3 What is the physical pin assigned to the ADC channel AN5?
Answer: Pin 9

2.4 What is the bit resolution of the ADCs within the PIC16F6767
Answer: 10-bits

2.5 How many internal general purpose timers are available in the PIC16F6767
Answer: Two, dmer (, an 8-bit timer/counter, and timer 1, a 16-bit timer/counter

2.6 How much RAM is available for your programs?
Answer: 1024 words of FLASH RAM

2.7 Once a PIC16I676 is programmed, how long can you expact that program to be
retained in the PIC (if it is not over-written by another program)?
Answer: Greater than 40 years

Chapter 3 — Software and Hardware Setup

B-2

Appendix B

3.1 What icon and MPLAB IDE operation must you use with caution, or not at all as
recommended by the author?
Answer: The ERASE THE TARGET DEVICE MEMORIES button.

3.2 If an MCU device suddenly stops working when developing your code and reloading
the adjusted code in the device, what can you check in the device memory to try and
troubleshoot the problem?

Answer: The device memory may have been inadvertently erased. Click on the READ
TARGET DEVICE MEMORIES icon, then display the Program Memory page with
View/Program Memory, and scroll down to address 0x3ff. If you see 0x00 at
that memory location, the device has probably been erased. The work-around for
this problem is to not use the internal RC oscillator of the device or use the internal
oscillator uncalibrated (OSCCAL).

3.3 What is the web URL that you can visit to find the latest version and/or check for
recent updates of MPLAB IDE?
Anpswer; www.microchip.com/ and then do a site search for MPLAB [DE

Chapter 4 — Program Architecture

4.1 In which section of the program will you identify the type of device for which the
program is intended?

Answer: In the Directives section of the program code, at the beginning of the program
listing after the comments that summarize the purpose of the program.

4.2 In which section of the code will you identify additional files that contain information
that is needed to complete the program?

Answer: In the Directives section of the program code, right after you identify the type of
MCU to be used.

4.3 Why do you not write the main body of the program in the reset section of the
program since that is where the program counter will be starting from upon initial
power-up or reset of the device?

Answer: There are only 4 memory locations between the reset vector and the interrupt
vector. This is just enough room to write a goto to the routine that makes up the main
progra.

4.4 What is the main difference between the code segment in the Initialize section and the
main section of the code?

Answer: The Initialization section of the code is where you configure the device
resources by manipulating the SEFRs. The Initialization section of the code is generally
only run one time, when the power is first applied to the device or after a hard reset.
The device resources and controlling SFRs can, and frequently are, manipulated in the
main section of the code after first being configured in the Initialization section of the
code.

4.5 List two purpaoses for writing code in subroutines as opposed to writing the same code
i the main program?

Answer: The use of subroutines aflows you to use sections of code that may be repeated
often throughout the program to perform redundant tasks. The use of subroutines
makes your cade easier for other users to follow and read. Carefully authored
subroutines can be used in other applications by collecting the subroutines in a library
that can be cut and pasted into other code. Subroutines can save memory space. Care
should be taken to ensure that the use of subroutines does not overwhelm the limited
Stack space of the device, particularly when using nested subroutines and interrupts.

Answets B-3

Chapter 5 — Program Development

B-4

Appendix B

5.1 List the steps required to list the files that make up a project.

Answer: Use the WINDOWS Explorer utility and navigate to the file where the program
has been compiled. The main files include the file extensions .asm, .ced, .hex, .lst,
.project, and .workspace.

5.2 Can you develop, test, and debug programs without aftaching the PICKit 2
programmer?

Answer: Yes, however those icons and functions specifically related to working with the
programmer will not be available until the programmer is connected.

5.3 Will the MPLAB IDE allow you to load a program into the target MCU device if the
program did not assemble properly?

Answer: No, if the build fails, the current program will not be compiled and will not be
loaded into the device. The previous program will rematin in the device which may
cause some confusion if you do not pay attention to the build error message. [t would
appear that the programming was successful because the device functions in circuit,
however your programming adjustments will not have been made in the program in the
device.

5.4 Which of the icons that allow you to access the target device memory should you use
with great caution, or not at all?

Answer: The ERASE THE TARGET DEVICE MEMORIES. [know you are probably tired
of seeing reference to the use of this icon but be assured, the redundant reference is on
purpose. I have tragshed too many devices by making this error and want to ensure it
doesn’t happen to you more than one time.

5.5 Why is it important to use the standard default file structure when installing MPLAB
IDE on your computer?

Answer: So that you can find the required .inc file for the device. MPLAB IDE utilities
are set up for the default file structure. You can override the use of the default file
structure, but other users of your programs may not be aware of your unique file
locations when they try to compile your programs from the source code.

5.6 Which type of file is unique to each particular MCU device?

Answer: The include file with extension .inc. The include files are placed in the
C:\Program Files\Microchip\MPASM Suite directory when using the defaults
during MPLAB IDE installation.

Chapter 6 — Working With Registers

6.1 Define SET and CLEAR.

Answer: SET means that the addressed pin, or register bit is in the high state, 1, or +3 'V
is applied as appropriate. CLEAR means that the addressed pin, or register bit is in the
low state, 0, O V, or ground.

State the appropriate register and bit to accomplish the following acrions. In your
answer list the register label name, the actual memory location in hexadecimal, the bit
label, and the bit number. Use the Question 6.2 as the example.

6.2 Which bit is manipulated to switching to Bank 1?
Answer: STATUS, 0x03 or 0x83, RPO, bit 5. SET RPO for Bank 1.

6.3 What register and bit would you read to determine if an arithmetic action resulted in a
zero result?
Answer: STATUS, 0x03 or 0x83, Z, bit 3. Z 1s SET if the result 1s zero,

6.4 Enable the weak pull-up resistors on PORTA, 27

Answer: WPUA, 0x95, WPUAZ, bit 2. SET WPUAZ2 to enable the weak pull-up
on PORTA, 2. OPTION_REG, 0x81, RAPU, bit 7. CLEAR RAPU to enable all
individually enabled weak pull-ups.

6.5 Disable all weak pull-up resistors associated with PORTA?
Answer: OPTION_REG, 0x81, RAPU, bit 7. SET RAPU to disable all individually
enabled weak pull-ups.

6.6 To what register would you load the factory determined internal oscillator calibration
value?

Answer: OSCCAL, 0x90. The value loaded into OSCCAL is retrieved from memory
location Ox3ff.

6.7 How would you configure the appropriate registers to make PORTA, 0; PORTA, 2;
and PORTA, 4 as digital outputs, and PORTA, 1 as an analog input?

Answer: TRISA, 0x85, TRISAD, bit 0, TRISAZ, bit 2, TRISA4, bit 4, TRISATI, bit 1.
CLEAR TRISAQ, TRISA2, and TRISA4 to make those pins output; SET TRISAI to
make that pin input. ANSEL, 0x91, ANSO, bit 0, ANS1, bit 1, ANS2, bit 2, ANS3, bit
3. CLEAR ANSO, ANS2. and ANS3 to make these pins digital, SET ANS1 to make
this pin an analog input pin.

Answers B-%

Chapter 7 — Instruction Set Overview

7.1 Does the movf instruction affect the Z flag of the STATUS register?
Answer: Yes

7.2 What value would the instruction mevf varl, £ serve?
Answer: This is a programming technique that can be used to check if the value in varl is
Zero Or not.

7.3 What precautions should you consider when executing nested call instructions?
Answer: You can overwhelm the available Stack space (8-bytes deep) if you have more
than 8 calls to subroutines before returning from a subroutine.

7.4 Which of the opcoede instructions is useful if you want to toggle an I/O pin to turn on
and off an attached LED?
Answer: xorwt.

7.5 What kind of information is included in the device .inc file? What directive would
you use 10 include the contents of the device .ing file in your program code?

Answer: The .inc file contains the mnemonic labels assigned to various device specific
SERs, register bits, and configuration words that match the documentation for the
device, This allows you to author code that can be more easily followed by another
user. The assembler directive to add the .inc file is

finclude <pl6f676.incs.

7.6 Which INTCON bit is automatically SET when the retfie opcode is executed?
Answer: The GIE bit which enables global interrupts. The GIE bit is CLEARED
automatically when an interrupt eccurs.

7.7 When using the rrf andfor the rlf opcodes to rotate bits through the C bit of the
STATUS register, what are some precautions that you need to consider?

Answer: The previous contents of the C bit is rotated into the target location before it
accepts the bit rotated out of the location. You need to make sure that the previous
contents of the C register will not contaminate the target register contents.

7.8 Is it possible to move values from one memory location or register directly into
another? Write a sarmple of code that would accomplish this task.

Answer: No, when moving contents from one register to another, the valze must pass
through the w-register.

moviw variablel ;load contents in variablel into the w-register
movwi variable2 ;load the contents in the w-register into variable2
The above code affects the STATUS, Z flag.
swapf variablel, w ;swap the nibkles in wvariablel and load into
;the w-register
movwi temp ;put swapped contents into a temp variable
swapf temp, w ;un-swap nibbles that were in temp
movwE variablel ;return original contents into variblel

The above code does not affect the STATUS, Z flag.

B-6 AppendixB

Chapter 8 — Device Setup

BANKSEL
movlw
movwi
movlw
movwft
movlw
movwt
moviw
movwi
BANKSEL

BANKSEL
mov1w
movwE
movl1w
movwi
moviw
movwi
BANKSEL
movlw
movwf

BANKSEL
bsf
BANKSEL

BANKSEL
bsf
BANKSEL

BANKSEL
moviw
xorwf
BANKSEL

8.1 Write the code segments required to configure PORTA. pins 0, 2, 4 and 5 as digital
outpuis, all other port pins as digital inputs with weak pull-up resistors enabled.

Answer:
Bankl

b 00000000
OPTICN REC
b 00001010
TRISA

b 000000107
WPUA

b’ 000000007
ANSEL
Bank0

;select bank 1
;weak pull-ups enabled

;0, 2, 4, 5 output, 1, 3 input
;program PORTA
;weak pull-up on 1, no pull-up on 3

;all digital

;back to Bank 0

8.2 Write the code segments required to configure PORTA pin 0 as an ADC with a clock
frequency of Freq/8 and left-hand justified.

Answer:
Bankl

b’ 00000001°
TRISA
b*00010000"
ADCON1

b7 g0000001"
BANSEL
Bank0

b7 00000010
ADCONQ

;select bank 1

;0 input, all others (except 3) output
;program PCRTA

;‘Freq/8

;0 analog, all others digital

;BACK TO BANK 0O
;left justified, Vdd as ref, ch 0 ANO

8.3 Write the code segments required to disable all weak pull-up resistors.

Answer;
Bankl

OPTION REG, 7

Bank0

;select bank 1
:SET RAPU bit
;back to bank 0

8.4 Can the direction of a PORT pin be changed after it is initialized in the Initialization
section of the code? If the direction can be changed. write the code required to change
the direction of pin 5 of PORTC.

Answer: Yes, {(assurning that PORTC, 5 is an output to start, change to input in code)

Bankl
TRISC, 5
Bank0

or to toggle PORTC, 5:

Bankl

b 00100000
TRISC, f
Bank0

;select bank 1
;8ET tc change PORTC, 5 to input
;back to bank 0

;select bank 1

;toggle PORTC, 5

;back to bank 0

Answers B-7

Chapter 9 — Delay Subroutines

B-8

bitdelay
movlw

movwE
goto

goto
nop
bit
decfsz

goto
return

Appendix B

9.1 Serial communications is based on precise timing of pulse widths. The pulse widths
can be calculated by the formula time = 1/ baud. For 4800 baud, the time interval is
.000208 seconds. Write a delay subroutine to generate bit pulses of this duration and
test your code using the MPLAB Simulator tool.

Answer: (the code below will create a delay of .000208 seconds)

66 ;this number works if the user uses the calibrated
;value for the internal cleck. This routine, including
;the goto and nop statements below allow the user to develop
;an anticipated delay of 208 us for the bits at 4800 Baud.
;This delay can be verified by using the stop
;watch function of MPLAB Simulator

count

S+1 ;these gote statements allow you to tweak the
;time of the

$+1 ;delay. goto statements like this take 2 clock
;cycles
;while the nop statement takes 1 clock cycle
;Lo complete

count, f

bit

Chapter 10 — Basic Input/Qutput

BANKSEL
movlw
movwi
movwi
movlw
movwT
movlw
movwi
BANKSEL

BANKSEL
bef
BANKSEL

movlw
movwi

Clrf

btfsc
bef
btfss
bef

10.1 List the code that would be required to configure the I/0 resources of the MCU so
that RAQ, RA3, RA4, RC1, and RC2 are digital inputs, the rest of the pins are digital
outputs and Weak pull-up resistors are enabled on the PORTA input pins.

Answer;

Bankl ;select bank 1

br00011001" ;0, 3, 4 input

TRISA

WPUA ;same pins have weak pull-ups
b'00000110" ;1, 2 input

TRISC

b’ 00000000 ; CLEAR RAPU to enable weak pull-ups
OPTICON REG

Bank0 ;back to bank 0

10.2 List the /O restrictions on RA3.
Answer: PORTA, 3 or RA3 is restricted to general input only because it also can be
configured to serve as a master clear reset from an external source.

10.3 You have a pin in PORTA configured as an input with the weak pull-up resistor
enabled for that pin. Inside the main program, you would tike to momentarity change
the direction of that pin to an output. What command(s) would you need to include to
do the switching from input to output and back again?)

Answer:

Bankl ;select bank 1

TRISA, # ; CLEAR the appropriate bit to make output
Bank{ iback to bank ¢

There is no need to change the WPUA register because the enabled weak pull-up resistors
are automatically disabled when a pin is changed to an output.

10.4 Write a command line that is an alternative to:
b Q0000000
PORTA

Answer:
PORTA

10.5 The following command segment will toggle the status on pin PORTA, 4, which
means if the pin is SET, the program will CLEAR the pin, and vice versa:

PORTA, 4

PORTA, 4

PCRTA, 4

PCRTA, 4

continue with program

movlw
xorwf

Write a tighter (more efficient code) that will accomplish the same task. (Hint: look at the
xorwf command.} :

Answer:
b 08010000 ;addressing bit 4
PORTA, £ ;1€ 1 then 0, if 0 then 1

Answers B-9

B-10

10.6 Switches are notorious for contact bouncing, which means that when the contacts
within a swilch are opened or closed, there is not an instantaneous make or break of
the switch contacts. When the switch closure or opening is sampled fast enough with a
computer, multiple closures or openings could be detected with potentially disastrous
results. Write a code segment that would help to alleviate the switch contact bounce
issue.

Answer:
switch on
btfsc PORTA, 0 ;switch connected to PORTA, 0O
goto switch_on
walt
btfss PORTA, O ;skip if switch open
goto walt ;hold while closed
10.7 Write out the defanlt configuration for the ANSEL, TRISA, TRISC, OPTION_REG,
and WPUA registers. Under what resource configuration conditions would the default
configurations of these registers be okay, meaning you would not have to address these
registers in the Initializarion segment of your program? Would it be advisable to use
the default configuration instead of deliberately configuring these registers, why or
why not?
Answer:
ANSEL = br11111111°
TRISA = b'xx111111° .
TRISC = b xx111111°

QPTION_REG = b’11111111°
WPUA = b/xx11x111’

bsf
bcf
main
btfsc
goto
movlw
xorwt
call
goto

Appendix B

Not very often, maybe when all PORT I/0 resources are going to be used as analog
inputs. Deliberately configuring the registers in the Initialization of the code would
facilitate the author and users of the software to focus on resource setup to match the
resource configuration to the objectives of the code.

10.8 Adjust the code that you used during this chapter to flash an LED when the switch
was pressed so that two LEDs flash but alternately (when one LED is on, the other is
off and vice versa).

Answer:

PORTC, 4 ;one LED on pin 4

PORTC, 3 ;one LED on pin 3

PORTA, 4 ;check if button pressed (0)
main ;1f 0 then skip this goto

b 00011000 ;mask 3, 4

PORTC ;flash LED

waltlsec ;wait for 1 second

main ;do it again

bsf
becf
main
btfss
goto
moviw
xorwf
call
goto

bsf
bef
bef
main
btfsc
goto
movlw
movwft
call
movlw
movwi
call
movlw
movwE
goto

10.9 Adjust the same code so that the LED is flashing when the switch is open and stops
flashing when the switch is closed.

Answer:
PORTC, 4
PORTC, 3

PORTA, 4
main

b’ 000110600
PORTC
waltlsec
main

;one LED cn pin 4
;jone LED on pin 3

;jcheck if button open (1)
;if 0 then skip this goto
;mask 3, 4

;flash LED

;wait for 1 second

;do it again

10.10 Adjust the sarne code 10 make a stop light simulation. In this simulation, the red
LED is on until the switch is pressed. Then like the operation of a stop light, there is a
pause, then the red light goes out and the green LED comes on for a shost period. After
the green period, the yellow LED comes on, the green goes out for a short period.
Finally, the red LED is turmed on and the yellow is tumed off and the program awaits
for the next switch press (the car).

Answer:

PCRTC, 4
PORTC, 3
PCRTC, &

PORTA, 4
main

L7 00100000
PORTC
walitssec

k' 00001000°
BORTC
waltlsec

b’ 00010000
BPORTC

main

;red LED on pin 4
;yellow LED on pin 3
;green LED on pin 5

;check if button pressed (0)
;1f 0 then skip this goto
;green on others off

;green for 5 seconds
;yellow on others off

;yellow for 1 second
;red on othexs off

;8o 1t again

Answers B-11

Chapter 11 — Analog to Digital

11.1 The ADC resources of the PIC16F676 share common input ctreuitry. What
considerations must be taken because of this common circuitry?

Answer: The ADC resources share common input circuitry which includes the capacitor
that is charged to sample and hold the input voltage to the ADC. If you are going to
use multiple ADCs, you need to consider this. There must be enough time between
ADC samples to switch the ADC channels, and then allow enough time for the new
voltage to stabilize on the capacitor before the ADC reading is attempted.

11.2 Which register and bit are used by the PIC16F676 hardware to signal that the
conversion is still in progress?
Answer: ADCONO, GO/DONE

11.3 Which register and bit can be used to disable the ADC circuits (this also would
reduce chip power consumption)?
Answer: ADCONQO, ADON

11.4 Can you read both the ADRESH and ADRESL registers while operating in memory
Bank 0?
Answer: No, ADRESH is in Bank 0. ADRESL is in Bank 1.
11.5 Is bank switching required in this code snippet? Explain your answer.
BANKSEL Bankl

moviw ADRESL
BANKSEL Bank0
movwi 1 _byte

Answer: No, but it is a good idea to do so. The 1_byte variable location would be in the
general purpose registers between 0x20 and Ox5f in Bank 0. However, the general
purpose registers are cross accessed to Bank 1 between Oxao and Oxdf, so you should
be able (o access |_byte from either bank.

11.6 What could you do if you wanted to reduce the noise present on the LSB of the ADC
output by changing the ADC output from 10-bits to 8-bits? Write a short code segment
to efficiently accomplish this change. (Hint; look at left justifying the ADC data.)

Answer:
bef ADCONO, ADFM ;left justify the ADC result
moviw RDRESH ;put upper 8-bits into w-register
movwE 1 byte ;put the upper 8-bits into the low working

;reglister
Simply using the left justify of the ADC output trunicates the lower 2 bits of the 10-bit
ADC output and this reduces any noise that will show up in the lowest bits of the ADC
output.

11.7 What would happen to the contents of the ADRESH and ADRESL registers if you
clear the ADCOND, GO bit before the ADC conversion is completed?

Answer: The ADRESH and ADRESL registers will not be updated and will contain the
previous ADC result if the ADC conversion is aborted before it is completed.

B-12 AppendixB

Chapter 12 — Comparator

12.1 What comparator mode configures the comparator to consume the lowest power?
Answer: Comparator Off mode, CMCON, CM2:CM0O b’ 111",

12.2 Which comparator maode connects the C,, and C . comparator inputs to RAO and
RALT and does not connect the C, | bit to RA2? Does the use of this mode create a
conflict if your application does not even use the comparator circuit?

Apswer: Cornparator without output, CMCON, CM2:CMQ b’010°. Not really. This mode
may only conflict if RAO and RA1 are digital outputs, but the /O pins in this mode
would automatically disconnect analog inputs anyway. It would be good practice to
configure resources you are going to use.

12.3 What is the value of the internal reference voltage applied to comparator input
C.. in the mode dictated by CM2:CMO loaded with 5'011" and VREN loaded with

b'10001011°?
Answer: If V=5 V. Vref is internal and in the high range. VR3:VRO =b1011"=11

Use:
Ve @ . (VRS’:VRO

x V,, = 2.989 volts
4 32] a

Answers B-13

Chapter 13 — Interrupts

B-14

Appendix B

13.1 What would happen if an interrupt “flag” is not reset before the interrupt service
subroutine returns control back to the main program?
Answer: The interrupt would be generated immediately after the interrupts are enabled.

13.2 Describe the difference between globally enabling interrupts (SETTING the
INTCON, GIE bit) and enabling a specific interrupt, for instance TMRO (SETTING
the INTCON, TOIE bit).

Answer: Enabling specific interrupts simply puts those interrupts in stand-by mode ready
to go. Globally enabling interrupts gives all those specifically enabled interrupts the go
signal. You can turn on and off all enabled interrupts with GIE. You can turn on and
off specific interrupts by manipulating the specific interrupt enable bit.

13.3 Does an interrupt have to be enabled for the associated interrupt flag to be SET by
the interrupt condition?

Answer: No, the interrupt flags operate independently of the enable status of the
interrupt.

13.4 What is the depth (number of bytes) of the Stack? What precautions must be
considered when working with the Stack?

Answer: The Stack is only 8 layers deep. If nested calls to subroutines or nested
interrupts occur that cause more than 8 PC pushes onto the Stack, each subsequent
push will cause a PC to fall out the bottom of the Stack. When returns try to retrieve
those lost PC values, the program will crash.

13.5 What precautions must be considered when using interrupts and other subroutine
calls that deal with the w-register and the STATUS register?

Answer: The w-register is used frequently in the program. The STATUS register is
frequently modified by opcode execution. If the calling program is interrupted while
manipulating the w-register or STATUS register, if your interrupt service routine also
affects these two registers, the original register contents will be lost with probably
catastrophie effect upon the return to the calling program. Temporarily storing the
w-register and STATUS register values at the beginning of the interrupt service routine
and restoring those values before returning from the subroutine will prevent problems.

13.6 How can “break points™ be used in program debugging?

Answer: Break points at strategic locations in the program will stop a program simulation
so that you can view the contents of varicus registers and note the elapsed time of
execution using the Stopwatch window.

Chapter 14 — Timer 0 and Timer 1 Resources

14.1 At what rate (in mstruction cycles) does the TMRO register increment when there
1s no pre-scaler assigned to the resource. Aliernatively, at what rate does the TMR1
register increment when a pre-scaler ratio of 0:0 is assigned?

Answer: Both TMRO and TMR 1 increment every instruction cycle.

14.2 What command begins the incrementing of the TMRO register? When does the
TMR1 register begin to increment?

Answer: TMRO begins to increment its register when the OPTION_REG register is
loaded. TMR begins 1o increment its registers when the TICON, TMR1ON bit is
SET.

14.3 Do the timer resources operate even if their interrupt function is not enabled?
Answer: Yes

14.4 Can you monitor the progress of the timer resources between interrupts? If so, how?
Answer: Yes, you can check the status of the interrupt flags and you also can access the
resource registers TMRO, TMRIL, and TMR IH values anytime in code.

14.5 Why is it important to CLEAR the associated interrupt flag in the interrupt service
subroutine before returning control back to the main program?

Answer: If the interrupt flag is not CLEARED, then an immediate interrupt will be
generated as soon as the interrupts are enabled.

14.6 Tn the programming exercises in this chapter, the interrupt service subroutines did
not contain code designed to temporarily store the w-register and STATUS register
contents while servicing the interrupt and then reload the pre-interrupt values into
these registers when returning to the main program as was recommended in the
chapter on interrupts. Why was this not a problem during the execution of the exercise
programs? Amend the exercise code (o take these precautions.

Answer: There were no subroutine calls from the main program so there was no danger
of nested subroutine calls. Only one interrupt was allowed at a time in the exercise
code so there was no danger of nested interrupts. The following snippet of code would
temporarily store the w-register and STATUS register contents and then retrieve the
data prior to the return opcode.

movwi w_temp ;copy contents cof w reg into a temp register

swapf STATUS,w ;swap the nibbles of STATUS and place into
;the w register, these nibbles will be swapped
;back when the STATUS register is recoverad
;at the end of the interrupt service routine

BANKSEL Bank0 ;forces a return to Bank § regardless of bank
;when interrupt occurred

movwE status_temp ;put the swapped old STATUS reg value in a temp

gwapf status_temp,w ;swap the nibbles in status_temp and put result

in jw_register

movwf STATUS ;STATUS now returned te pre-interrupt value

swapf w_temp, ;take the old value of w_reg and swap nibbles

swapf w_temp,w ;swap nibbles again and place into w_reg, w reg
;now returned to pre-interrupt value

retfie ;this command also sets GIE to enable global
;interrupts

Answers B-15

B-16

Appendix B

14.7 You can very accurately determine the interrupt time interval due to program code
execution. What factor other than code determines the actual interrupt time interval?
How might you measure the actual interrupt time interval?

Answer: The accuracy of the MCU clock source contributes to the accuracy of interrupt
and otber delay time intervals. The clock accuracy depends on the device, voltage,
temperature, and other environmental factors. You can use an oscilloscope tied to an
17O pin that is toggled at the edges of the interrupt to measure the time interval of the
interrupt.

14.8 Thinking in general terms of the resources available in the PIC16F676, how would
you configure the resources to build a basic frequency counter?

Answer: The TMR1 resource would be configured as a counter, the TMRO resource
would be configured to interrupt at a specific time interval, for instance 500 mseconds.
The program would start TMRO and TMRI simultaneously. At the expiration of the
TMRO interval, the number of counts in the TMR1H and TMR 1L registers would be
sampled, then the number doubled, to calculate the frequency in Hertz.

Chapter 15 — Asynchronous Serial Communication

15.1 In locking at the bitdelay subroutine in the example code, what value would be
loaded into the count variable to produce a delay appropriate for 2400 baud serial
communications?

Answer: Approximately 130, though the actual value would have to be determined by
use of the simulator to compensate for code overhead.

15.2 What code adjustments are required if the data stream was increased from 8-bits to
16-bits? What else must be considered if there is a significant increase in the number
of data bits that are transmitted at one time (hint: think about the bit time interval
produced by the delay routines and the code overhead contribution to the delay)?

Answer: The bitcounter variable would have to start at 16. You would need to check to
see if the lengthened character would cause enough delay in the bit delay time interval
to prevent sampling the bit state in approximately the middle of the bit.

15.3 The MPLAB Simulator can be used to predict the length of a delay produced
by code. What other factor also contributes to these timing delays? How can you
determine the actual timing of a serial data sream?

Answer: The accuracy of the system clock also affects the length of program delays.
Using an oscilloscope connected to the data line can allow you to measure the length
of the bit delay.

15.4 What is(are) the ASCIT code(s) required to send the number 127 to the LCD?
Answer: “1” in ASCII = 49, “2” in ASCII = 50, “7” in ASCII = 55. Three values that
represent the ASCII characters would have to be sent, 49, 50, and 55.

15.5 What is the code that you would send to the LCD to clear the display and move the
cursor to the upper left comer?

Answer: 0x0c to clear the display, 0x80 to move the cursor to the upper left comer,

line-0.

15.6 What adjustment to the exercise code would be required if the LCD used data sent
with the MSB sent first?
Answer: You would use the r1f opcode versus rrf.

15.7 In the previous chapter on Interrupts, the temporary storage of the contents of the
w-register and the STATUS registers was emphasized. Why would that strategy be
important if the timer interrupt resources are used to generate the bit interval delays?

Answer: Because the w-register and STATUS register are used extensively while sending
data to the external device. If the interrupt occurred in midstream, the critical values in
those registers in all likelihood would be lost or corrupted.

Answers B-17

B-18

movwE
movlw
movwi
bef
call
nextbhit
bcE
btfsc
bsf
call
decfsz
goto
bsf
call
return

Appendix B

15.8 In the program exercise, the individual bit being sent was rotated through the carry
bit that is included in the STATUS register. What code alternative might be used to
determine the state of the bit to be transmitted?

Answer: Though not particularly efficient, the oprand argument for the bit to be checked
could be a variable. Then you could use a loop to increment the bit variable to be

checked.
byte to send
.8
bitcounter
PCRTA, 5
bitdelay

PORTA, 5

byte to send, bitcounter
PORTA, §

bitdelay

bitcounter, £

nextbit

PORTA, 5

delaysmS

;set up to send 8 bits
;send start bit

;sends MSB first

;get to high for resting state

Chapter 16 — Serial Peripheral Interface Communication

16.1 List the advantages and disadvantages of each serial communication technique
{Asymmetrical and SPI).

Answer: Asymmelrical advantage: one data line required; disadvantages: timing
is critical, relatively slow. SPI advantages: relatively fast, timing not critical;
disadvantage: multiple lines needed.

16.2 If one SPI device needs a CLEAR CS line and another SPI device needs a SET CS
line to operate, can these two devices share all three signal lines (CS, SCK, and SI)?
Answer: Yes.

16.3 If the wiper resistance in the MCP41010 is specified to be 52 Q, what resistance
would you expect when vou command the wiper position to b*00000000°?
Answer: 32 (2.

16.4 What line(s) of code would need to be changed if the attached SPI device required
commands sent in LLSB first format?
Answer:
rrf data to send, f jrotate command right into carry

16.5 For the sake of code clarity, you decide that you would like to treat the command
byte and the data byte as a single 16-bit variable with the labels dataH and datal..
To do so, write an amended SPI subroutine that would send all the data bits in one
subroutine instead of two passes through one subroutine as was done in this exercise
{once to send the command byte and then again to send the data byte). Hint: look
t0 see how this was done in the b2_BCD subroutine (binary to BCD conversion
subroutine), loopl6 loop.

Answer:
movwf dataH ;new variables declared and loaded with data
movwi datal
spi
movlw .16 ireset bit counter for 16 bits
movwE bitcounter
trans_lcoop
bef PORTC, ST ;assume 0 bit
rlf datal, f ;rlf low byte through carry
rlf dataH, £ ;¥1f high byte accept bit from carry
btfsc STATUS, C ;if carry is high, set bit high/else skip
bsf PORTC, 81
bsf PORTC, SCK ;clock in the kit
bhcf PORTC, SCK
decisz bitcounter, £ ;check if 16 bits sent, if not, go back
goto trans_loop
return

Answers B-19

Chapter 17 — Working With Data

17.1 Explain how you could multiplex four 7-segment display units to display all digits
at one time. Draw a circuit diagram for the required circuit. Can this be accomplished
with the PIC16F676 device?

7805 ARRLD547
+L 9V -—FIZ : e 3 o 12
B 77 001uF —|RAM 0O RA1
/l ras i—: raz |
Slges & reof
51rcs RC1HE—
"{res rez f2

All Resistors g § §
470 Q

10| 9 8] 7| ©

Common

Cathode
LED

B [
1 2] 3 4| &

All Resistors

470 0
2MN3905 2N3906
1 kQ 1 k0

Figure Question 17-1 — 7-Segment Display

Answer: Use switching transistors on each common cathode line (o turn on the digit and
then move on to the next digit. If you do this fast enough, the viewer will not be able to
detect that the digits are really only on one at a time. The PIC 16F676 has enough 1/0O
lines to handle two more switching transistors.

B-20 Appendix B

Chapter 18 — Putting It All Together

18.1 How can you customize the keyer project to include a start-up sequence of Morse
code characters, for instance to send “HI” or send your ham radio call sign? Consider
if you want this start-up sequence to be transmitted over the air waves or not.

Answer: Use a data table with the text that you would like to send and call a routine to
get each character to send in turn. This may require building a character table for each
letter in the alphabet made up of the dits and dahs that make up the character. If you do
not want this start-up message sent over the air, simply do not key the transmitter.

18.2 Develop circuit and software changes to automatically send common Morse code
sequences like sending CQ calls.

Answer: Build on the program adjustments above. Add a push button swiich that is
polled in the program. When this button is pressed, a jump to a subroutine sends the
desired message.

18.3 Develop circuit and software changes to add a power-on LED to the project.

Answer: Connect an LED to an unused I/O pin that is programmed as a digital output
pin. The SET this bit early in the program, probably in the Initialization section of the
code.

18.4 Develop software changes that will increase or decrease the amount of time the PTT
line is held closed after the last Morse character is sent.

Answer: Look at the delay loop created using the TMR resource and adjust the starting
register values to achieve the desired delay.

Answers B-21

Keyer Project
Circuit Board
Construction Manual

Introduction

Use the following steps to install the components into the keyer project circuit board. The
components are the same ones that you used while performing the exercises in the text. The
components are mounted flush against the board surface unless indicated in the individual
steps (for the voltage regulator and the two transistors). All the components are mounted
from the silkscreen side of the board (the side with the
cormponents outlines and lettering) except the battery
J —|- |- ARRLOSS holder, which is installed last and is installed from the

back side (foil side) of the board.

When soldering, remember that more solder is not
necessarily better. Use just enough solder to
make a good mechanical and electrical connection.
Use care to double-check that the proper coraponents
are being installed and with the correct orientation.
The board is a high quality, plated through hole
construction, which makes for a professional and
durable project, but the plated through holes are not
very forgiving for de-soldering and reinstalling mis-
placed components.

Step 1 ‘

Orieat your circuit board as indicated in Figure
C-1. Find the four 470 Q resistors (yellow, violet,
brown) and install them at the indicated locations.
Bend the leads at 90°, close to the resistor body, put the
leads through the appropriate circuit board heles and
press the resistor bodies flush with the circuit board
surface. Resistors can be installed in either direction.
On the foii side of the board, bend the leads outward
stightly to hold the resistors in place while soldering.
Solder each of the leads and then clip the excess leads
as close to the circvit board surface as practicable.

@ [seel? ?
o - Hoo| -
O Lid-A3A 4eq - 1t(d

DA

D2

3 Elg -cFe
e

478
2008

0s
3
PEENS

Rev.

470 e @-

q

®

?885@ YY)

se e sOoOon
5/949101d

Keyer Project

PIC~MCU Programming for Beéinners

+

Yolume Speed

Figure C-1

Step 2

Locate the two IN914 diodes (similar in appearance to the resistors but having a
glass body). Note that one end of the diode has a band. The unbanded end is the anode
{(goes toward the positive current), the banded end is the cathode {goes toward the negative
current). Locate the diode component outlines on the circuit board, D1 and D2. Note that
the component outlines have banded ends also — this is to assist you In installing the diodes
with the proper orientation. As with the resistors, bend the diode leads at 90°, close to the
component body and install the diodes in the indicated locations, pay particular attention to
the banded ends. See Figure C-2.

Step 3

a. The 7805 voltage regulator looks just like the 2N3904 transistors and it is easy to
confuse the parts. Locate the 7805 voltage regulator and double-check that you in fact have
the voltage regulator by making sure it is marked with the numbers 7805 (there may be
some additional lettering on the specific component, but it definitely will have the numbers
7805. The transistors will not have those numbers). Note that the regulator has a flat surface

C-2 AppendixC

Valume

J I_ ARRLOS35 J J l ARRLDS36
I
e, t®| | @ edtalt, @
; | HO® - o i.. + | HO®| - ¢ -
ADA ueq - 3t g S O Lld-A3% ued - 3ta [g 8
& Y .”’Ig P ¢R
g dINTIE | ¢
* <53 ® S . <3
_ <2 o <32
%E L o Z o 2 ® oo
Y e| e ~— & a yrs|mAFe 5] &
“ ' i < relf® N o 5] &
X M & e RN M g
~ S
mlUee Jg LallelE B[Ujey o o2
e |o £ o . o _|o® £ a
))]
LA=1L E o m *| —|® £ o
o ~|e s B ol —|e a &
p 5 9 &
o/ egm |£6 o|logn |58
K I H I
. ° S ¥ .) S ¥
= 2
o + I
[[
a o
Speed VYalume Speed

Figure C-2

Step 4

Figure C-3

opposite a round surface and three wire leads. Locate the 7803 regulator outline on the
circujt board. Note that the component outline also has a flat and round outline to help you
correctly orient the regulator. Bend the Jeads slightly so that they fit in the holes in the circuit
board. Push the regulator down toward the board surface until there is approximately %4 inch
distance between the regulator body and the circuit board surface. Do not attempt to push
the component body down so that it is flush with the board surface or you might damage the
component. Slightly bend the outer leads of the regulator to hold the component in place and
solder and clip the three leads.

b. Locate the capacitor. It is marked with 103 on the side of the component. This
capacitor can be installed in either direction. Locate the component outline on the circuit
board and install the capacitor with the bottom of the component flush with the circuit board
surface. Solder and clip the excess leads. See Figure C-3.

Locate the 14-pin IC socket. Note that one end of the socket has a half-moon notch in it.
Locate the IC socket compenent outline on the circuit board and note that it also has a half-
moon notch in the ocutline. Install the IC socket so that the notches are lined up. Hold the IC
socket in place while you solder only one socket lead on the bottom of the board. Inspect the
IC socket iustallation and ensure that the socket body is flush against the board surface. If
necessary re-melt the soldered pin and re-seat the IC socket. Once you are satisfied that the
socket is flush against the circuit board surface, solder the remaining 13 pins. Do not solder
the PIC16F676 1n this location; this would make 1t impossible for you to program or re-
program the device later. See Figure C-4.

Keyer Project Circuit Board Construction Manual C-3

| |

| |

ARRLDS37

®| +

oe{ - m

e 1ND/3 30

ted [e0e |@
.
<UTuk
[)

85

78
K—\

Yolume

C

LN B N B N N
22848T31d

Y
L J
.I_ﬁ o)
I~ @
~ n o
- Pk
— ®| ¢ .
® < >
A
o * o0
. 41]
< [2]=
el BN 3 IS
. &
T
'-‘. .D'Iﬁ
* S
-
[2 EE
@
L o a
{] g <
L] & an
i
[] 5 >
0
=
i
(]
=t
o
Speed

Figure C-4

ARRLO538

i.. +

—

e|MNO-330

e T m

[3 I
ul @%ENE
FRGERES
g
tﬁg
»

1

83
[]
.0

78
/of\

Valume

Jd-A3H MEG i

9£945101d q

1 @

@
L]
.I_E fos)
@||<]
I~ n &
T £
il
5 &
o & 50
e w
2[5
| <
N a
T -
LY .m_._)
0
® L e
M
® £ o
<
® 2 e
@ 87&
[] & =
@
[] 5 X
O
£
1
Q)
—
o
Speed

Figure C-5
C-4 AppendixC

Step 5

a. Locate the two 2N3904 transistors and note that
they have flat surfaces just like the regulator did. Also
confirm that you have the transistors by ensuring that
the components have the 2N3904 identification labels.
Locate the transistor outlines on the circuit board, and
— while matching the flat side of the transistor with
the flat side of the component outline — install the two
transistors. Push the transistors down toward the circuit
board surface until you have approximately % inch
clearance between the component body and the circuir
board surface as you did with the voltage regulator.
Solder and clip the excess leads.

b. Locate the two light emitting diodes (LEDs),
one will be red, and one will be green. Note that one
of the LED leads is longer than the other. The longer
lead 1s the anode; the shorter is the cathode lead. Also
note that there is a flat spot on the rim of the LED lens.
The flat spot corresponds with the short. or cathode,
lead of the LED. Find the LED component outlines on
the circuit board and note that each LED component
outline has a flat side also. When installing the LEDs,
make sure the short lead, and the flat side of the LED
body, are lined up with the component outline (the
short lead goes in the hote with the square pad). You'll
have to make a decision as to which LED calor you
want to indicate keying the transmitter and which LED
color you want to indicate the Push to Talk (PTT.) 1
used red for keying and green for PTT. The keying
LED is adjacent to the words “dit-dah’ on the board;
the PTT LED is adjacent to the words “KEY-PTT on
the board. Install the LEDs with the compenent bodies
flush against the circuit board surface. Solder and clip
the excess leads. See Figure C-5.

Step 6

a. Locate the speaker and the speaker location on
the circuit board. If the speaker has the polarity marked
on the component, take note of the positive (+) lead
of the speaker. nsert the speaker into the appropriate
holes and hold the speaker flush against the circuit
board surface while soldering in place.

b. Locate the slide switch and the switch
component outline on the circuit board. Hold the switch
in place while you solder only one lead of the switch.
Inspect the switch installation and make sure the switch
body is flush with the circuit board surface. Melt and
re-solder the pin until you are satisfied with the switch
installation and then solder the remaining two pins.

¢. Locate the two connectors and the connector
component outline. Using the same technique as used

Il

ARRLO539

+

b

nND#3¥30

o} H

. G
™ 5
. l—'1
i .
S
Iee)
-
+
Ya lume

=ATH

PHEENS

yeg =3

@
d
n
s @9 @
S

D2
[EIHI:I--

g

sosooen
94949101d

1 @

! @
L J
_LE foe]
|| s &
o n &
tipah
*les
L
& - L
® oo
4 R4
g i~
| <
kl [a]
-T a
® @ 2
® Il
Q
® s @
el
[] E a
[.
M
L o a
L 8"&
L] A
o
® 4 X
[|
=
]
.
-
o
Specd

.oot;l.‘.ooo-

Figure C-6
J J L ARRLO540
[
L @
. i.. + HO®| - .
O Lfd-A3% ueg - 3 S
Simmz S
¢
SKhpE @9 &9
llc3 S

Valume

o2
[Ell-ﬂ:l-i
; L]

L N N N N
549497101d
s OOPOS

Rev.

o{a7g}e *Li7ote

ool ee{to}e

Keyer Project

PIC-MCU Precgramming for Beginners

Speed

Figure C-7

to install the switch, install the two connectors.

d. Locate the two variable resistors and the variable
resistor outlines on the circuit board. Install these
resistors one at a time, they are 1dentical resistors. Install
the resistors with the adjustment shaft facing outward
from the circuit board. Mechanically, slightly bend the
tabs on the resistor body just encugh to hold the resistor
body flush against the circuit board surface. You may
have to hold the resistor body flush with your finger
while you solder one resistor lead only (not the body tabs
just yet). Inspect the resistor installation and melt and re-
solder the component as necessary to get the component
body flush against the circuit board surface. Solder the
two remaining resistor leads; then solder the tabs of the
resistor bady. You don’t need to fill the holes around the
tabs with solder, just apply enough solder to make a good
mechanical connection between the tab and the circuit
board ground plane (the solder pad). In a similar manner,
install the second variable resistor. See Figure C-6.

Step 7

You are almost completed with the board. Find the
O V battery clip, the nylon washers, and the two screws
and nuts. The battery clip is installed on the bottom of the
circuit board and the two battery clip leads are soldered
from the top side of the board. The battery clip installation
will take a little mechanical dexterity to get everything
in place before you solder. Install the two screws into the
mounting holes of the battery clip. Put a piece of tape
over each screw head to hold the screws in place. Place
two nylon washers over each screw on the bottom side of
the battery clip. Now insert the screws through the two
mounting holds of the circuit board from the back side
of the board (solder side). Line up the battery clip leads
with the two holes in the board and with all four holes,
two screws, and two leads lined up, install the battery
clip. Put the nuts on the screws from the component side
of the board and tighten things down snugly (but not so
snug as to crack the circuit board or battery clip). Once
you are satisfied that the battery clip is installed with
good mechanical integrity, solder the two leads from the
component side and clip off the excess leads.

Once you have loaded the keyer program into the
PIC16F676, you can install the device in the IC socket
{making sure the notch on the IC matches the notch on
the IC socket). Wire up the companion sockets to your
paddle and transmitter connectors. Install the battery,
turm on the board, and fire it up...you're ready to go.
Congratulations.

Keyer Project Circuit Board Construction Manual C-5

PIC 16F676 Include
File Contents

D-2

LIST

; PleF676.INC Standard Header File, Version 1.00

NOLIST

Microchip Technology, Inc.

; This header file defines confiqurationg, registers, and other useful bits of

; informaticn for the PICl6F676 microcentroller.

; the data sheets as clesely as possible.

These nameg are taken to match

; Note that the processor must be selected before this file is
; included. The processor may be selected the following ways:

; 1. Command line switch:
; C:\ MPASM MYFILE.ASM /PIC16F&676
; 2, LIST directive in the source file

/ LIST P=PIC16F676
; 3. Processor Type entry in the MPASM full-screen interface

IFNDEF _ 16F676

MESSG “Processor-header file mismatch. Verify selected

processor.”
ENDIF

W

F

INDF
TMRO
PCL
STATUS
FSR
PCRTA

PORTC
PCLATH
INTCON
PIR1

TMR1L

Appendix D

H'0000
E’¢001

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

EQU

H' 0000"
H'0001"
H'0602°
H' 0003
H' 0004
H’' 0005"

H' 0007
H’000A"
H' 000B’
HTOGO0C”

H'QQ0E’

TMR1H
T1CON

CMCON

ADRESH
ADCONQ

OPTION REG

TRISA
TRISC

PIEL

PCON

OSCCAL
ANSEL

WPU
WPUA
I0C
TOCA

VRCON
EEDATA
EEDAT
EEADR
EECON1
EECON2
ADRESL
ADCON1

GIE

PEIE
TOIE
INTE
RATE
TOIF
INTF
RATIF

EQU
EQU

EQU

EQU
EQU

EQU

BEQU
EQU

EQU

EQU

EQU
EQU

EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H/00CF'
H/ 0010

H'0019

H'Q01E’
H'001F’

H’ 0081’

H* Q085
H' o087’

H'308C

H’'008E’

H’' 0090’
H’ 0091

H’0095¢
H’ 0085’
H’ 0086
H' 0096

H' 00897
H'009A
H’009A7
H’' 008B'
H'd09C’
H’ 009D’
H' 00%E"
H'009F"

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

H' 0007’
H'0C006"
H’0005"
H*0004"
H’0C03"
H' 00027
H’' 0001
H' 0000

EQU
EQT
EQU
EQU
EQU
EQU
EQU
EQU

H’ 0007
H' 0006
H’ 0005
H' 0004
H' 0003
H' 0002
H' 0001
H’ 0000”

PIC 16F676 Include File Contents

D-3

ERIF EQU H'0007*
ADIF EQU H Q006"

CMIF EQU H'0003"

T1IF EQU H’ 0000’

TMRLIF EQU H’ 0000’

P TICON BiES - - oo mmmmm oo m oo e e e e eemm e oo
TMR1GE EQU H' 00067

T1CKPS1 EQU H'0005"

T1CKPSO EQU H' 00047

T10SCEN EQU H' 0003’

NOT_T1S8YNC EQU H’' 0502

TMR1CS EQU H' 0001’

TMR1ON EQU H’ 0000’

PREp— COMUON BifS == - - oo o s oo o oo oo e o oo e
couT EQU H'0006"

CINV EQU H’ 0004"

CIS EQU H'0003"

CM2 EQU H'0002°

M1 EQU H* 0G0’

CMO EQU H'0GOQ* K

fmm- - ADCONQ BiES — o mm oo oo m e e e mnmm—m— oo
ADFM EQU H! 0007

VCFG EQU H'0006"

CHS2 EQU H' 0004’

CHS1 EQU H’ 0003’

CHS0 EQU H'0002"

ele) EQU H'0001"

NOT_DONE EQU H’0001°

GO DONE EQU H'0001"

ADON EQU H'0000"

jm-m-- OPTION Bifg - ~m o om o oo oo oo o e e -
NOT_GPPU EQU H'0007"

NOT_RAPU EQU H'0007"

INTEDG EQU H/0006"

TOCS EQU H' 0005’

TOSE EQU H!0004°

PSA EQU H0003"

PS2 EQU H' 002"

PS1 EGU H’ 0001’

PSO EGQU H’ 0000’

PRS- PIEL BIb@ -m-mmm - mm oo m e mf oo e -
ERIE EQU H’ 0007’

ADIE EQU E*Q006’

CMIE EQU H'0003"

T1IE EQU H' 0000’

TMR1IE EQU H 0000’

PP —— POON BIfS —mm = - mmm oo m o mmf e m o e e e

D-4 Appendix D

NOT_PCR EQU H’'0001°

NOT BOD EQU H 0000
PR OSCCAL BilS = o= mm - s mm o m s oo mf oo
CBL5 EQU H' 0007
CAL4 EQU H 0006
CAL3 EQU H' 0005
CAL2 EQU H'0004"
CAL1 EQU H' 0003
CALO EQU H 0002
R ANSEL Bif§ == - mm - oo o oo mm oo m o
ANS7 EQU H 0007
ANS6 EQU H' 0006’
ANSS EQU H' 0005
ANS4 EQU H 0004
ANS3 EQU H'0003"
ANS2 EQU H 0002
ANS1 EQU H'0001"
ANS50 EQU H'0000°
R VRCON BAbS = oo s oo mm oo o oo f o oo e
VREN EQU H' G007
VRR EQU H'0005"
VR3 EQU H'0063"
VR2 EQU H 0002
VR1 EQU H* 0001
VRO EQU H’0000°
R EECONL BitS = oo oo o s oo mmee o f oo o e f e o
WRERR EQU H' 0003’
WREN EQU H' 0002
WR EQU H' 0001’
RD EQU H*00C0°
RS ADCONL Bil§ = mmmm oo oo m i o o o e e
ADCS2 EQU H' 0006
ADCS1 EQU H' 0005
ADCS0 EQU H 0004°

_ MAXRAM H'FF
__BADRAM H'06‘, H’08’-H'09‘, H'OD’, H’11’-H’18’, H/1A’-H’1D’, H'60’'-H'7F
_ BADRAM H’86', H'88'-H'89’, H'8D', H/8F', H'92'-H'94’, H'97'-H'98", H'E0’ -H'FF’

; Configuration Bits

PIC 16F676 Include File Contents D-5

CPD EQU H' 3EFF’

_CPD_OFF EQU H' 3FFF’
P EQU H'3F7F
_CP_OFF EQU H' 3FFF’
_BODEN EQU H' 3FFF’
_BODEN_OFF EQU H' 3FBF’
_MCLRE_ON EQU H'3FFF’
_MCLRE_OFF EQU H’ 3FDF’
_PWRTE_OFF EQU H’ 3FFF’
_DWRTE ON EQU H'3FEF
_WDT_ON EQU H'3FFF’
_WDT_OFF EQU H'3FF7’
_LP_OSC EQU H' 3FF8’
_XT 0SC EQU H'3FF9’
_HS 0sC EQU H' 3FFA’
_EC_08C EQU H' 3FFR’
_INTRC OSC_NOCLKOUT EQU H' 3FFC’
_INTRC_OSC_CLKOUT EQU H'3FFD’
_EXTRC_OSC_NOCLKOUT EQU H’3FFE’
_EXTRC_OSC_CLKOUT EQU H' 3FFF"
LIST

D-6 AppendixD

ALY

W

DR

“" (Semi-colon) use in comment lines:. 4-2,6-6
#Aefine: oo e 4-4,7-19
#include: ..o, 7-18, 8-3
$ (assembler reference): ..o 9-7
B e e e 4-3
ASTJIE: e 3-4,5-5,58,11-16,17-4
ASIN WINAOW? Lo 4-3
hex filer. . oo 5-5
ANC ALET e 4-3, 5-8,6-3
;Delay routines: ..o, 4.7
sInterrrupt service routine:o.ocooveeeeecneeeennnn. 4.7
_ CP - Code protection bit ON:c.ecrvvevererreesireenns 84
__CP_OFF- Code protection off:.........oocceeeven. 84
_COMIE oo 8-3
_config direCtve: ..o 8-7
OX00: e 4-4,6-2, 14-11, 14-16
X8O e s 0-3
10-bit ADC: e 11-2, 18-8
16-bit
o106 100 41 13 ST ST UTRRRRURROTRURTRON 9.7
TEEISTELT e 14-2, 14-15
7-Segment LED
diSPlays:....coo i 17-24f
Truth Table: o 17-24f
7805 voltage regulator: ..o 3-6
8-bit
70 1 1) TR 9-7
AEVICE et 2-2
WOIKING TEZISIEI: .oovirieceiiceee e, 14-2
9-volt battery holder:.........ocoiriinii s 3-6
A
ACTION: . e e e 13-12
ADC: e, 2-6, 6-2, 6-7, 8-4, 8-3, 8-8,
11-3,13-2, 14-15, 14-16, 18-5
asm fle: Lo 11-6
ACCUTACY . et e eorc e e eese s er e 11-2
DLOCKS o e e e 2-5
IIPUL it cree s se e e s 2-3
Justfication: ... 11-3
limitations
TUIIE. cecoevriee e rrvnrrrrrsssrrrearsrssarrraresseersnnees 11-2
QUPUL dALAI ... 11-3
2 ga e 21 11 U 11-5
oot EU 1o) | 11-2
Resources
10 COMAZUIR.oorirainriirreerrrerimresececrcrrreens 11-4
TESOUTCES. . oceaeierrerrerecrreseraneneaeaesrrasseeeerasnrrrrees 8-7
BEHUDT veireiiere e e e e 11-3
VAU et e 11-8
ADD SFR: ..o e s v e 13-12

ADD SYMBOL: ... 9-4
ADRESH: ..., 11-3, 11-6, 14-16
ALAS et 7-3
AN e e 2-6
Analog
CIFCUIE(S)! vereriieeerire e e recre e e err e e scn e s seamne e 1-2
COMPATALOL: ..oeieerseassreamesrerrearrnssnrner st eramsnes 2-2
INPUL oo e e e 10-2
INPUE PINSI oo e 6-7,8-5
SOULCESE oveirieiieeeieiariee s ieaieseresaiiberasaesarianrsana s 2-2
to digital converter (ADC): ...ocovvvnnene 2-2, 11-24f
analog VOILAZES .. covrrrrerrcr e e 10-2
AND ed: e 8-4
ANSEL Analog Select Register
(ASR) e 6-7,10-2,12-2
ANSO AN ST . i ecv e e ee et et e e 6-7
application code: ... 18-4
ArchIteChure: . ..o e 4-3
110} (=)0 T2 1 1O OSSO 6-2
ASCII
COUE! oo e s 15-8
VAU oo a e 15-7
ASR (ANSEL Analog Select Register):6-7, 12-2
ASSEMDbBIEL: oo e 7-2
QITECHIVET ..oeiei ittt 8-2
QILECHVES: oo 4-3,7-18-7-21
#define: ... SO 7-19
#include: oo 7-18
BAnKSELl et 7-20
CHLOCK: oo e 7-20
At e 7-20
Nd: e 7-21
ENAC. ciiiiiiiicir e e 7-20
BISE: oot e 7-18
OTED eveeeereeeeeeeemeeen e eeenasbe e a e enn s ane s beneas 7-19
WINAOW . oo et 4-3
Assembly
COde: e 4-2.5-5
LANGUAZE: 1ot 7-2Mf
Assembly Language File:cocoiiniievieconn 5-6
Asterisks, lInes O ... 4-3
Asynchronous Serial Communication: 15-2 ff
B
Bank0: ..ot 4-4,6-2,6-3
J27: 1519 LS 4-4,6-2.6-3
BANKSEL: i 4-5,7-3,7-20
Battery holder: ...ooovevvreivee e 3-6
Baud Rates: ... cen v 15-3
calculation:ovveervioc e 15-3
Binary form

COMIMNATIAS 1IL v v eeeere e e ee e 7-2

Binary numbers:.......c.ocooeeieeeeee e 1-3

binary search algorithm: ... 11-2
Bit
CONTIZUTATIONT (viiiice et 4-3
PULSEST 1 9-8
bit
PAEITI i crecee et cn e e s 17-5
Bit 0x035, or RPO, oo 6-3
bit 0x06, INTEDG: ... 6-5
BIT SELECT: e 8-2
DS e e e 7-2
Aata: s 15-2, 15-9
delay subroutine:cceiveeiriieiie e 16-7
PATIEYT ittt 15-2
SEQUENCE OF i 16-3
SLATL. —oveverrirrevreree e seesee e reeres e e 15-2
STOP! erreeereererermesiemmeceseseesiescan e rne e [5-2
bitdelay subroutine:...............n 15-6
Blue bus column: ..o 3-6
Board SELUP: oo s 3-6
Boolean Truth Table for the AND Operation: 7-5
Boolean Truth Table for the OR Operation: 7-10
Break point(s): .o 3-4,9-5, 13-134f
Breakpoint:.....coveiciiniinncen, 14-9, 14-14, 15-5
Brown-out Detect Enabled:.......coooiiiinnn, 8-4
BUILD: ittt s e e 5-5
DY e 7-2
high: e 14-2
UPPELT oo e ec s ettt e en e e s 6-4
bytes
JOWETT oo e 14-15
UDPPEL. oottt et e ea et ee s s 14-15
C
CDIE e e 6-4
Calibration valtie:ooeo e 3-4,6-6
CAILL Lo s 4-5, 4.7
delay T mS: . e 9.5
FTa kY 1ot (o) S 4-2
INEEITUPE_SETVICE .. oiiiiieier e eas 13-13
0] 1o 0 LD SO 8-7
Calling program:ccooveiiiircicir e 4.6
(O Yo F:To7 1 o) SRS 3-6
CAMTY DI o 16-6
carry out of the MSB: ... 6-4
carry/borrow bit: ... 6-4,7-3
085 o o3 - RN 4-4, 7-20
CD-ROM: . e 1-4, 3-2, 3-3
chip select line: ... 16-2
CINV Camparator Qutput Inversion bit: 12-2
CLECULE: ccvere e smcee e e s e 18-3

Circuit diagram.ooeieveriees e e §-4,18-2
CIS Comparator Input Switch:.......coococoniine. 12-2
CLEAR: et 1-3,5-3
CLEAR(ed): ..ot 7-3,13-2
CLEARING: ... 2-4
ClOCK: oo 8-2, 16-2, 16-3
falling edgei. oo 16-3
fTRQUENCY vttt 8-3
frequency specification:.........cccviciciniiiine 16-3
risSing edge: ..o 16-3
speed: L 11-3
clocking signals: ... 15-2
CMO Comparator mode bit ... 12-2
CM1 Comparator mode bit:...........ocovn 12-2
CM2 Comparator mode bit:.........cccocoiiin, 12-2
CMCON Comparator Control Register: 12-2
CMCON, COUT Comparator Qutput Flag:........ 12-2
Code
1nstructions
more efficient: ..o 10-4
PrEliminary: ..o 8-2
PIOZTAIMITINE: v.vverv e Cirvererer e ee e 1-4
Protect off ..o 8-4
code
application: ... 18-4
Code Block DIagram:ccovceerivinirceeroneninanane 15-3
Color COAINE: veeiiiiei et 3-6
Commands:cooevreiiii e 7-2
Comment
LIRS ot 4-3
711 14111 | SO SRS 6-6
Sttements (PUIPOSE): ...ccoverveererrieren e iecmeennes 6-6
COMMEIIIE: et e 4-2
communication
digital: oo 18-2
Communication Protocol
Asynchronous Senal: ... 15-2
Corparator: 2-5,6-2, 6-7, 8-4 — 8-5, 12-2f
ANALOE: (e 122
Analog Select Register: ..., 12-5
CINV DI e 12-4
CITCUILD 1oetiverat e e cce e et e 12-2
CMCON SFR: oo 12-4
IOVELLITIE: vvovvereveveererieee e reee e 12-4, 12-5, 12-6
INOAES o e e 12-4, 12-9
IOOAUIET Lo 8-7
NOB-INVETTINE. oovveceieeee e eeee e 12-4, 12-5, 12-6
OUEPUL DIL oo 12-4
separate from MCU program code:................ 12-6
SEEAPT oottt en e 12-2

Comparator Control Register CMCON: 12-2

CINV: e e 12-2

CIS: s 12-2

CMUO: e e 12-2

CMI: e 12-2

OV 2. e e e 12-2

COUT: e, 12-2, 12-7
Comparator Output Flag CMCON, COUT:........ 12-2
COMPULET PrOZIANL c..veeeerereeecrereisiriese e e rerreennas 7-2

JANGUAZES ..o 7-24f
Configuration

COABL e 8-6

WOIEL oottt 8-2

WOTId SEHANES. coeoiiiirieree e e 43
CONFIGURATION BIT: e 8-2
Configuration bits: ... 8-3-8-4
CONFIGURATION BITS SET IN CODE: 5-3,8-3
CONFIGURE:........co oo 8-2,8-3
CONFIGURE/CONFIGURATION BITS: 5-3
CONFIGURE/CONFIGURE BITSo, 8-2
CONFIGURE/SELECT DEVICE:cocvvvveee . 5-3,8-2
COMAICES: it 13-9
CONSLANL(S) . eeevi it e e 4-3,7-3

(literal NUMDBETS): ..vveiviiieicr e 7-2

VAIUE! oot 4-4
control functions

DASICI oo 4-3
conversion time

o aVEoFh 110006 LR SOV RPRRR 11-3
COUNT . e e 9-4
count

PULSEST o s 14-2
Count - dedicated variable: 9-3
L0011 10 S (01005 o LU 4-4
COUTIET: 1eeireeieeeeeeoee e e e ee e e ene e 13-16,17-3

TLOUE! it 14-2
Counter variables, nested loop:........coccornvrvninnnns 9-8
counts

number of: ..., 14-2
critical timing iSSUES: ...vvveervieieeeee e 14-9
CS

LIne: 16-2

SIZOALL oo e 16-3
Current himiting resistor (8):......ccccoverveeennnn. 2-4, 8-4
D
D - destination register:.........ccooccerecrnernrnnnnens 7-3
AN e e e 18-2((

SWITCH Lo e n 18-8
daisy-ChainIng:cooovivirieee e 16-3

data
line cONNECHON: «.c.ceeiiiiic e 15-2
MEITIOTY TAP: ceerveeeeeeeenrcecrreerres oo seessesreessesnens 6-3
PACKAZES: oo e 15-2
table: e 17-2-17-4
WOrKING With! ooveeevricrr i, 17-24f
data Bit(8): oovvieeeeceecerr e 15-2, 159
Data Code Protect: ...ooooeveiiciireicceccecccnnee, 8-4
DC (Digit Carry/Borrow flag bit): ... 7-3
DEbUG: et 3-4
DEBUGGER/SELECTTOOL/MPLAB SIM: 5-5
DEBUGGER/SETTINGS:cooiiiiit e 5-5
AECT8Z: oo s 4.7, 9-6
Decimal
FOTIME e s 7-3
DUITIDEIS. oo iee et et e et nar e e e eeen 1-3
decision branch: ..o 12-8
Default bit SEMMES:ccveviece e e 8-2
Defines: oo 4-2 4-4
Lol o) (AU URUUS YO 14-13
Delay: e 9-3,9-7
SEMUP SECHON! ..o e s 9-8
delay routine code:ocovvveneciisrnree e e 10-8
Delay subrontine(sh...covececvrvrenreancinene 9-2ff, 15-8
PIOJECL: (oot 9-21f
delaylmsS: i 9-5
delay200ms: ..o SRR 4-7
Delays, Long: oot 9.2
Destination register - di.....cooviicrcienicnnieenene 7-3
Device
CLOCK: e 14-10
clock frequency: ... 3-5
COMPATALOT TESOUITET 1veiscnrercerecrerecesimsee e 87
dOCUMENTALION: .- veeviie e e e 11-3
I tAtONS . et e 16-3
TESEE PIM oot 2-5
SEUP: wieeieere e 2-5,6-2,8-2
specific calibration value: ... 8-3
Device reset STatiso veevieie e ecersesreenes 6-3
DEVIGE SETUP: ..coiiiiinriccecite e eeaen e 8-2
Device Setup Memory:ccovvevieinine e cie e 6-2ff
devices
daisy-chalning:cocovivveiiiic e 16-3
Digit carry/bormow bit: ..., 6-4

Digit Carry/Borrow flag bit (DC): cooveviveviieee. 7-3

digital

INPUL it sr e e i 2-5
INPUL PUISI .. eeaeerienerinreniesseresmesnesesnsenssinsiens 8-5
J0ZIC SLALESI cocvviirii e 10-2

high Or JoW: e 10-2

To 00 0) o o] § AU 10-2

41111010 (O RO SRS 2-3

Revolution: .. 1-2

SOUTCEE 1 vteeeeiireeece e e etiee e et e eee e e e ees e e e s smnaeenneas 2-2

VOLEAZEST oot 10-2
Digital Potentiometer

MCPAT010: e e 16-2
directive

Qb e 17-5
DITectives: ... 4-2
Directory, PIC Programming:cocccvvveenverrnnnens 5-2
I e 18-21f

SWIECHI Lo 18-8
Aly200m8: i 4-7
A e 7-20
At BIFECTIVE: ettt 17-5
duplex communication: ..o 16-2
E
Editor: oo 7-2
EEPROM Electrically Erasable

Programmable Read-Only Memory: 13-2
Electrically Erasable Programmaable Read-Only

Memory (EEPROM): ..o 13-2
electronic KeYer: ..o 18-2, 18-8
Enable bit flags:......ccoriii 13-2
BN D e 4-7,7-20
B e e 7-21
EAACT e 4-4,7-20
External crystal options: ...ccvvvivvvrevevnernninnn, 8-2
external device: ... 13-16
External Resources, Interrupt capable: 13-2
E
ForegiSter .o 7-3
7

ey 13-14

PrOZIAIM STEPS. oooveiieirceceer s resare e rareras 13-16

SIEP oo 13-15, 14-8
Factory calibration value:.......cooveviiviinnn 8-6, 13-7
file ADC AN i 11-6
L1, INIC T e e 6-3
Filter capacilon: ... 3-6
FIRE button:ccccocciiieiiveeiiinnn 13-14, 13-15
First Program: ... 3-5,3-7
HaG(S): oo 7-3,13-16

overflow: ... 14-2
FOSCIB: e 11-5
frequencies

OPCTALIILE vvrvvveeerreecrrererreerranrrrreersaeerersereresrseeans 11-3

G
General Purpose Registers

{GPR) oot 2-5,4-2,4-4,11-6
get_ade subroutine: ..o 18-8
Exploration Exercise:cococvcvinicii i 14-13
GIE - Global Interrupt Enable bit: 13-3, 13-10
GND -~ Ground: .o.ooceeeeeeeeiecieeeeiee e 2-3,2-4
(o) (0 LRSS OON 4-4,4-6,4-7, 9-6
GPR
{General Purpose Registers):.... 2-5,4-2, 4-4, 11-6
GIroUnd: ..o 2-3,2-4
H
Hardware: ... eeir e 13-
ATCHIEECTUTC: cvveeii e e e e srres e 1-3
SEIUP. oot e 3-5
hardware NUANCE:oooo v viretssee e 10-8
Hexadecimal
3 [5-6
§C0) 4 (SO 7-3
£ 017215 10) 4 ARSI 3-4
NUMDBELS: e eerrertetoereae e 1-3
High level languages:occoeeeei ORI 7-2
High speed crystal or resonator:ocvveervvvreinns 8-2
|
FOpin: o v 11-2, 13-8
PORTA, 2 oo enene s 13-7
PUIPOSES. .eevirrvraenteenrearrssereserneennssneesina s sanes 2-5
TESOUICES o ttereeeererre e eer e e e e e seae e eee e e eereens 8-2
JELO o) 1S 2-51t, 6-7, 6-8, 8-3, 8-7, 13-2
EXtRITAl e 2-3
POrt: oo s 10-2ff, 11-3
PORTA: et e 10-2
PORTC: e 10-2
IC pin number: ... 10-2
JC SOCKEL: vt 3-3,3-4
IDE (Integrated Development Environment):....... 3-2
T0CT e 7-9
Include fIle: a1 4-3
F ol L1 0 T 1 1 6-3
Incon
GIE Bt 13-12
Indicator LEDS ..ot ereaee e 8-4
I0fDITE LOOP: et e rirmvre v e e e 2-5,4-6
TEHEE e 3-7
55T T 4-4
InitialiZation: ... e 3-6
O, e 8-7,18-4
MU e 8-6
SCELTOM: v ceeeeeereeree s e 5-6, 10-2, 10-3, 10-5,

12-10, 13-7, 14-7, 14-12, 14-15, 16-4

input
SWILCHI Lo 18-2
VOITAZE: et e e e 12-2
VOILAZES: (i 12-8
Input/outpit PIN(S) @ .vveveerecr e e 1-3,2-2
INSITUCHOIL wovvecvt et aen e 1-3
TEEUTTL. vevvreeentinesieienstemtsaassssenseeaesseaeeerrssessaas 4-6
58t (OPCOUES): oot 1-3
Instruction cycle counter function:ceee........ 9-3
Instruction cycles: ..c...ocoveereiinenns 9-5, 9-6, 9-8, 14-17
INTCON Lo 14-6ff
Register: ..ot 13-7,13-10
INTCON: ... e e 13-12
INTCON -
Interrupt Control Register:.......... 13-3-13-4, 13-6

GIE - The Global Interrupt Enable bit: .. 13-3, 14-9
INTE - the RA2/INT

External Interrupt Enable: 13-4
INTF - The Port Change Interrupt Flag bit: ... 13-4
PEIE - The Peripheral Interrupt Enable bit: ... 13-3
RAIE - The Port Change Interrupt Enable bit: 13-4

TOIE - The TMRO Overflow
Interrupt Enable bit:.......ccoevenees 13-3, 14-9
TOIF - The TMRO Overflow
Interrupt Flag bt 13-4

INTE The RA2/INT External

Interrupt Enable bitr ..o 13-4
INTEDG, bit 0x06: ...t 6-5
Integrated CitCuit(§) .o oee e e e re e 2-3
Integrated Development Environment (IDE):....... 3-2
Interface: ..o 1-3
Internal

100D e, 9-5, 9-8

100D COQET it 9-8

OSCLLALOT: o 5-5

0scillator CITCUIE: ..o e 3-4

RC Oscillator: . ..o e 8-4

TESOUICE: cueeeneieneieaasvienereenraesassteesrenssseans s e nee 13-16

Resources, Interrupt capable:ocovveiieenne. 13-2

voltage reference:cccooevieicnncniieeens 12-9ff
Interrupt Resources

ADC INtermupt: ... 13-3

Comparator Interrupt:........cccovieeeveceiasceeenne. 13-3

EEPROM Data Write Interrupt: ... 13-3

External Interrupt RAZ/ANT: .o, 13-3

PORTA Change Intermupts: ...ccoooeveeeevreeenenne. 13-3

TMRO Overflow Interrupt:coceocovreernene. 13-3

TRM1 Overflow Infemupt:ccoovvircriecenen. 13-3
INEErTUPL(S): <o 13-2ff, 14-10ff

capable External Devices: ..., 13-2

capable Internal Resources:......coooeevieeeennen, 13-2
capable rESOUTCES ..viviirrer e 13-2
FalSE: oo 13-16
interval me: ... 14-17
Old: e 13-16
TESOUICES ceeetirmvaresrerasrermresresseesssensasas e 8-4,13-3
Resources, COntrol:ccooocoivivi e e, 13-3
SEIVICE COUET ..ot 13-2
SEIVICE FOUNNE: coveeesvennnnnnn. 43, 13-2, 14-9, 187
SIZNAL oot 13-16
N{=0110) AN 4.2,4-4, 13-9, 14-14
Interrupt.asm file: ... 13-6
interrupt_service:4-7, 13-9 — 13-10, 14-9, 18-7
INEETVA]L EINE -oeieieeiresee s e eveeaes e seseessne s 14-2
INTF - The RA2/INT
External Interrupt Flag bit:ccoomieenne 13-4
IntroduCtion:cvooiec e e 1-2
10CA Interrupt-on-change PORTA Register:..... 13-6
TOCAD: e e e 13-6
TOCAL et 13-6
TOCAZ: e e 13-6
TOCAT: e s 13-6
TOCAL: e 13-6
JOCAS: et 13-6
J
JUIDP oo beneereaneeeneeeenens 13-16
10 memory location: ..., 4-2
VECTOTS. «ovveeeeeervinreseeeesiaeeresestescarasssssseassanseans 13-9
JUMP-E07 ot et 4-4
Instructon (Call):ooooveeciiei e 4-4
K
K (CODSIANT) et e 7-3
key switches
ClOSHIE: oo 18-4
keyer
ELlECTOMC: ettt eeeee e 18-2, 18-8
Kt Of PATLS: oo e 3-5
L
Language
ASSembly .. 7-24f
HighLevel: .o 7-2
Low Leveli e 7-2
Machine:ooccovvcceiieieiirenns 34,4252, 55,72
| 5 B 13-6, 13-16, 15-4
AISPlAYS et 4-6
Serial PrOLOCOL:ccoiiii et 15-5
130 411 USSR UU U OSSR 3-7
baud rates:.........coieeeie e 15-4

LCD display: ..o 11-6

LCDOutput subroutine: 11-7, 15-6, 15-7, 16-6

Least Significant Bit (LSB):...... 6-3, 15-2, 15-4, 16-3
LD e I2-6
Display Unit
T-SeEMENt: ...oooireeeee e 17-2
Common anode:.........coooooieiiiee e 17-2
Common cathode: ..., 17-2
11 1T8) Lo 116) oAU SRR 18-2
LED(S): oot 10-8
LED(s) - Light Emitting Diodes: 2.3, 2-4,3-7,

9-2, 13-3, 10-6, 13-6, 13-8, 13-14, 13-16, 14-13
level

10 1o (o ORI 14-17
INHCTOL oiieteeien ettt e esmee et ssee e 14-17
Library of delay FOUtineS:.....cco.vvreererrniricneie e 9-8
L1brary reSOUICE: ...ovieee ettt e e 4-6
Light Emitting Diodes - see LEDs
limitations
hardware: ..o 16-3
BLINE. ettt et e e et 16-3
LASEE et e e 7-18
Literal
COMBLANLS ..ot iiiiiiiriiiee et 8-3
numbers (COnStants): ..o iieeiiiieie e, 7-2
LOogie LOW: o 1-3
logical SEALESI . .o vt e 10-2
Long delays: ..o 9-2
loop
holding: e e e e 14-15
2024 ¢ 1 OO TR 10-7
Loop counter varable:coovvvvvinis e, 9-8
Low level languages:...........c.ccooiiiiiiicinncenn. 7-2
Low power crystali ..., 3-2
LSB (Least Significant Bit):...... 6-3, 13-2, 15-4, 16-3
M
Machine language:.......co.ceerere. 3-4, 4-2,5-2, 5-5,7-2
macro level ... 14-17
IMIZII e e 4-6
Main Program:covcccorecrcvaervnnerrnnrrenes 4-3,4-6,13-2,
13-16, 14-5, 14-13, 14-15
decision branch:ccoccoivn s 12-8
MaASK et e s 5-6
Math routines: ..o 4-6
MCP41010 Digital Potentiometer:ccveen.... 16-2,
16-3, 164, 16-5
MCU: s 2-3,2-6, 3-4, 3-7,4-3, 5-2f, 7-2,
12-9, 13-2, 13-6, 13-7, 13-16, 14-13
capabilities
current handling:.......ococvevere v, 17-2
ClOCK: o 15-2

IEITAL v 14-2
CONAGUIINE . vevevvii e et e 8-2
FBVICES .ttt et 9-8
L/O TE80UTCEST civneeiiiee e 17-2
15301 SR OSSO USSR SRPR 8-5
program code

separate from comparator:cceceeveeeneee. 12-6
=T =] O 13-14

Y (L 0) SO 8-4
Memory
ArChIECTILE: e 2-5
DANK: e, 13-11

SWIECHINE: (oo 6-2
JLaTor L Co) o LA 1-3,3-4,4-2
location Ox00:cccoi e, 44, 13-14, 14-2
Tocation Ox000:..........co v 13-9
location Ox004: ... ees 13-9
location Ox04:......eeeeeeeeeee e e 13-2
JUSToF:Tale) 112> (s S 4-4
SPACE! oeieieciee e s s 9-8

memory address
OX00: s 6-3
OXBO: oot e 6-3
MEMOTY 10CALHOIL vooes e 6-3, 6-4
MESSAZE JOOPS: v 4-4
Message_COUNEET: ..ovovveereiieieciiie e e 4-4
micro fevel: .. e 14-17
MICTOCHIP: ..ot 1-5, 3-2
MicrochipMPASM Suite:oocooiiiiieeieeeee 6-3
Microcontroller development tools:..........ccceeene. 3-2
Microcontroller(s):c..cocovveeerieens 1-2, 1-3, 14, 2-2
DOIOULE_UP! oeiiiiieiieiii et iee e e e eee e e e 4-4,4-6
Mnemonic
descripLiVe! ... e 6-3
GO s i1-6
SYMDOIS! (oo D2
MNEMOMICS . .oee e veenerrerer e 1-3, 84, 10-2
Morse
CRATACEELS, «oioceeeieceeeeees e srr e s 18-2
Morse code: e e 18-2
Most Significant Bit (MSB): ._............. 6-3, 15-2,16-3
MOUSE POINIELT oevieviie e ceeecene e e e 3-4
MPASM Assembler: . eiiieeirern. 32,34
MPLAB cOmpPIler: ..ot 6-3
MPIABIDE: ... 2-6,3-2,3-3, 3.5, 3-7,
5-2ff, 6-6, 8-3, 9-2, 14-13, 14-14, 18-3
Comparator PrOJECE: ..o.evreverrreeerieemreeerseeeeeees 12-5
DEVICE SETUP: ..o 8-2
Initialization: ..o 8-6
INEINIOTY . ovvarivrerreeanseerenaseesnseessseeseeenssennneeensenees 2-5

OPEration:..cccceceeieieeriee e 3-3

Program: ..oooooiiiee e 4-2 i

Program/Serial:ccccooeveiieiniceee e 15-4
Programi/SPT: ... 16-3
PIOZTATOIUTIE: ..ovreree it eee s et 2-2,4-2ff
TESEL oiiiiiierccer e e b e 4-4
TESOUICES . evvvremrireenrermcrrenarasnee e nreaessanens 2-5,4-6
SOftWare: ..o 1-4-1-5
Version 8.10: e 3-2
MPLAB IDE CONFIGURE MENU: ...oovvieiee e 8-7
MPLAB IDE New Project Wizard
CONFIGURE/CONFIGURATION BITS: 5-2
CONFIGURE/SELECT DEVICE:c..ooeoiiiiiee 5-2
NEW PROJECT: ... e 5-2
PROGRAMMER/SELECT-
PROGRAMMER/PICKIT 2:cccoeee. 5-2
MPLAB IDE Operating icons
ANIMATE: ... e e e 34
BUILD: L e e e 3-5
BUILD ALL: . e et e e 34
ERASE THE TARGET DEVICE MEMORIES: 3-5
NEW PROJECT: ... 34,52
OPEN FILE: ... e evinanens 34
PROGRAM: ...ttt 3-5
PROGRAMTHE TARGET DEVICE:..................... 3-5
READ TARGET DEVICE MEMORIES:........ccccccunuee. 3-4
RESET: ...t s n e 3-4
RUN: 3-4
SAVEWORKSPACE:c.iiciiiiiiiiiieeeeicee e e 3-4
VERIFY: . i 3-5
VERIFY THE CONTENTS OF
THETARGET DEVICE:ccooiiiiiiii e 3-5
MPLAB SIM: oo 3-2
MPLAB Simulator:..9-2, 9-3, 9-8, 13-14, 14-17, 17-5
debugging capabilities:......ccccevieiecnnnnn.n. 13-12
MSB (Most Significant Bit):............... 6-3, 15-2,16-3
ITUEPLEXT et cere et 17-5
N
n-channel FET: ... 2-3
n-FET drain resistor: ..o 2-3
N-FET 80UTCE TESISION ..ooviie e e 2-3
pested calls: ... 13-9
Nested loop counter variables:........ccocecvreeenneenne. 9-8
NeStIRZ COUNLEIST .uvivieereiir et ieee e e e 9-7
New Directory Setup:......ccooecivconencieiee e 5-2
New project wizard function:..........c..ccoovivie e, 5-2
NIbbIEs: .o e 13-11
Nominal crystal or reSoRator: ..o vreeeeerere e 8-2
L] o U RO U 4-4,6-7
NOTEPAD: ...coooiiiii et e 6-3
NPN

COlECHOT TESISLOT ureeiiiiriecereireese s e e e e s e 2-3
o 1 DU LA o g LY 13 16 ol 2-3
ITATISISEOT. et ie e et ae e e s ne e 2-3
(o]
OITSEE VAIUE: .oviii et s e e 17-5
ORIIS JAW, ot ae e 17-2
One-byte of data:......ccooveoniiiv e 2-2
opcode
commented OUL:vvriir i e s 12-5
Opcode descriptions:.......ccocvveneene 7-4 through 7-17
OPCOARS: <o 7-2ff, 9-7
AddIW: e 7-4
ANAIW: e e 7-5
ANAWE: e 7-5
o 7-5
[0 SRR PRN 7-6
41 YL OSSR 7-6
L] 233U 7-6
Tor:Y | LN 7-7
CIE . e s 77
Clrw: e e s 7-7
CLEWAL oot crarr s 77
COME: oo e e e 7-8
4 o) R 7-8
AECESZe oo 7-8
ZOOI it SRS 7-9
INCE. e 7-9
I0CESZT et 7-10
TOEIW: e 7-10
FUeY 2 PR 7-11
INOVE: e 7-11
ITIOVIW e e e e 7-11
OV e 7-12
1110 S USRS 7-12
[1 L= 712
TEEIW . e e e 7-13
[(101 5 o S USROS 7-14
o USRS U U 7-13
& o SO 7-14
SIEED: e 7-14
SUDIW ! e e 7415
SUDWE e 7-16
SWADL: e 7-16
XOTIW . e 7-17
XOTWET e 7-17
Operating
JCOMS: e 3-3
EITIPEIATUTE! - v tcre e e e et 8-3
Oprand: ... 1-3,7-2

OPTION_REG:coiiiinnn 6-4, 6-8, 8-7, 13-8, 14-4

INTEDG (Interrupt Edge Select bit):......6-5, 14-4

PS80 (Prescaler Rate Select bit):......ooe...e. 6-5, 14-4
PS1 (Prescaler Rate Select bit):......ooue.ee. 6-5, 14-4
P52 (Prescaler Rate Select bit):............... 6-5, 14-4
PSA (Prescaler Rate Select bit)............... 6-5, 14-4
RAPU PORTA Pull-up enable: 64, 6-7, 14-4

TOCS (ITMRO Clock Source Select bit): . 6-5, 14-4
TOSE (TMRO Source Edge Select bit):...6-5, 14-4

ORG: et 4-5,7-19
ORG Ox000: ..ot 4-4
OSCCAL: oo 8-3,8-6

(T4 1] 1= U S 0-8
OSCCAL Internal Oscillator

Calibration Register: ... 6-5-6-6
QOscillator

Internal: ... 5-5,.8-3

OPHLONS .ot st e e e ere e 8-2
oscillator calibration value:...........coccccevrvvinnrennnn 6-6
Qutput

PIIS! e 8-5

WIRAOW: oo 5-6
Overflow: ..o 6-4, 7-3, 16-5

Hag: 14-2
P
PI6F676 INC FILE: ... e 5-5
PLOFOTOINCT (vt 6-3
pl6f676.nc filer ..o 6-3
Pad: . e 9-7
Padding code:......ccoiimii e 9-8
paddle: ... 18-8
DATILY DILS: «rvveee oo eeeee e 15-2
PCON Power Control Register:ccooooeeveennnne.. 6-5
PEIE Peripheral Interrupt Enable bit: 13-3
Physical PIN .o 10-2
Physical pin aumber:..........ccoeoeioeeeeeeeeceeeee 2-3
PIC Programming Directory:........cooeveeeeeeieeennnnee. 5-2
PICI6F630 - Sister device: ..o 2-2
PICI6FG76: o, 2-2,2-6,3-3, 3-5,3-7, 4-3,

4-4, 6-2ft, 7-2, 8-3, 8-5, 9-2, 9-6, 10-2, 13-2,
13-7,13-10, 13-14, 14-13, 14-16, 15-31f, 16-2

bastc capabilities:oocoei e 2-2
capabilities

current handling:......cccocooevioiiiiieciien e 17-2
connected to LCD: ..o 15-6
hard Wiring: ...ococveevieeeieeiec e 13-15
Inc file: oo e e 7-3
Internal architecture:ocooooveeiiieiieee e 2-2
Interrupt capabilities: ... 13-2
INEETTUPE VECTOL .ot 13-9
Oscillator OPIONS:ocruviiicecnecee e 8-2

TESEL VECTOT, 1. 13-9
serial communications resources
lack OF oo 15-3
PICTOFOTO.INC, .ot 8-3
PIC16F688
serial communications resources: 15-3
PICKIE 2t oo e 5-2
BOATA: e 3-3
Development Programmer:ccooeeenenne 3-2
AOCUMENLALION 1 evvivicveiiir e 3-3
RArdWare: ... 1-5,3-3
| (0 o] 3-5
Programmer:ccoccooviiinniiceneee 3-2,5-2,5-8
PICKI 3 e 3-2
PICSTART : oo e e 3-2

PIE! Peripheral Interrupt Enable Register:......... 13-4
ADIE - The A/D Converter Interrupt

Enable bit: oo 13-5

CMIE Comparator Interrupt Enable bit: 13-5
EEIE - EE Write Complete Interrupt

Enable Bit: ..o, 13-4
TMRIIE - Timer 1 Overflow-Interrupt
Enable bit: oo, 13-5
Pin assignments:..c....oooivvecvriaimrnniriereiesveienins 2-5, 8-5
pin number
(TR 10-2
pin number 13
PORTA, 0 (RAQ T/O pin)iioccccicicee e 10-2
Pin RA3, Uses: .o 2-4-72-5
S T 2-3
g o 23
PIn- 1 e 2-3
Pin- 14 e 2-3
PID-di e 2-3
PIn-O: s 2-3
PIR1 Peripheral Interrupt
Register 1 oo 13-5, 13-6, 14-5

ADIF - A/D Converter Interrupt Flag: .. 13-5, 14-5
CMIF - Comparator INterrupt Flag: 13-6, 14-5
EEIF - EEPROM Write Operation

Interrupt Flag: ..., 13-5, 14-5
TMRIIF (TMR 1 Overflow Interrupt
Flag bit: oo 13-5, 14-5
TMRIIF - Timer | Interrupt Flag: 13-6
PORT
change INtermupt:. ... icvi e 8-5
INPUYOULPUL .o 8-4
PIN designation:c.ovvvevveesenerear e 2-3
port
J/O PIOS oo e 10-2, 10-5
TESOUITE! 11.ovoeevensrermere e sbemr oo cne e 15-4

POTT SEUPT o ovvveereer e e 10-2, 10-4 - 10-5

PORTA .ottt 2-3,2-5,6-7
PORTA REZISTEL: 1vvveieeeieerienei e seeesie s 10-6
RADIRAL: et 6-7
RAS: e e 2-6

PORTA I/O pins: ..c..coovevniiirierccnicconccnniiene 16-3

PORTA, O (RAO I/O pin): voeeeiee e 10-2
pin number 13: .o 10-2

PORTA, 2 (RAZ) et 13-6

PORTA, 2 PANC.ceoeiiiicee e e 13-8

PORTB oottt e 2-3

PORTC: oo 2-3,6-7,13-8
PORTC Register: . ..ooeoveoeeeicicieececnc 10-6

PORTD .ottt s 2-3

POIENHOMELET: oovveii e 11-6, 16-3
WIDET POSIHION: oo 16-5

Power bUs JUMPETS: ..o 3-6

Power SWItCh: ..o 3-6

Power-up Timer Enabled:c.ooooiiiennnene 8-4

Pre-Scaler Ratio
Change: ..oeeeeeeirrivrereree et 14-12

Pre-scaler(8): oo e 8-5, 14-3
ASSIZNIMEINT .ot 14-7, 14-12
CHCUIES: ettt ire ettt na e 14-3
EFFECE L e 14-11

Processor, type Of ..o 4-3

PrOSIAIT cviveevere ettt e 1-4
ATCHITECTUIE: 1o evet et eieeree e e 4-2
COE: e, 1-3, 3-4, 8-3, 16-4
counter (PC): v 9-7,13-2, 14-16
counter information:.........c.cceveniiniene e 13-9
EXECULIOIL 1 1artreecee e e e 4-3
fle) s 3-4
HOwW: e, 7-2
INformation: ... 4-3
MEITIONY . 1 evreeeeeeeeceeeeee e 3-4
memory block: ..o 2-5
OPETALIONS: 1.vevecieeeiieiee et e e ve s e e eean 6-6
QULHDE: e e, 4-21f
SUITUTIATY L oo e eem e ses e e 4-3
summary deSCription:cccoooioiiiicis e 4-2

program
CALlINE: oot 17-5
COUDEET .o itreeeeeee e e e 17-5
LT 02 11 To) ¢ SRR 6-3
JOOPT e e 10-7

PROGRAMTARGET DEVICE:............ccocoiiiiiiiinnee, 5-8

Program/ 7-Segment LED: ... 17-4

Program/ADC: ... 11-2-
L0 COMMZUIET 1rviieieie e ceieee e 11-4

Program/Keyer:ooooooieieieiiie e 18-2

Program/On Off Button:................ccoocviniineene, 10-8

PROGRAMMER/CONNECT:ccocvviviiiiiiiniinnni, 5-8
PROGRAMMER/SELECT-PROGRAMMER/PICKIT 2:., 5-2

Programming: . ..ccoovevoeeeecenrer e 1-4
COLE! it 9-7
HATAWATE . ..ot et 1-5
INSIIHCEHION: ettt 1-3

Project Template: ... 5-2

proto-board:........oooin 13-16

prototyping board:.......cocooev v 3-6, 10-7, 18-3

PS2:PSO (PS2, PS1, PSO): i, 6-5

o OO PO 18-5

PTT (Push-To-Talk):coeveiiiriene s 18-2

Pulse WIdths: cvevvecrciiiinccnree s 9-8

PUSH DULTOD: -t et 10-7

Push button, user interface:coveveeerecceeiiines 8-4

Push-To-Talk (PTT): oo 18-2

R

RAD: vt 2-3,2-5

RA L e en e e 2-5

RA2/INT: o 13-10, 13-12, 13-14, 13-15
External Interrupt: Teerirr e 13-2
Tnterrupt Resource:coocoevevvveivcincnncnninenn, 13-off
INEETTUPL(S) vevvverenrrieinervenrecerenes 6-4, 13-14, 13-16

RAZ_COUNTET i e 13-11

R et s 2-5

RAL: e e 2-5

RAZL PIR ot 8-3

RAS PIN: it e cin e 8-3

RAIE The Port Change Interrupt Enable bit:...... 13-4

RAIF - The Port Change Interrupt Flag bit:........ 13-4

RAM: (oo 2-6,4-2,6-2
AaSH: oo 6-6, 6-8

Random Access Memory (RAM): ... 2-5

RAPU .ot 6-4
BIEl e e 10-3

RC 0scillator modes: . ..vevvveenvemieenr e e 8-3

RC oscillator Optons:c.cceevveeeicecerccnieicniien, 8-2

RCO: e 2-3,2-5

R s 2-5

ROC5: ettt 2-3

T€-COMMUMRIIE: 1..eieeiieenie e e s mracesran e 12-11

Red bus column ..ot 3-6

reference Vvoltage: ..o v ieninciicceenen, 12-3,12-10

Register
BIE e et 1-3
fo e 7-3
JEaToF: Y1 o)« O S SR EP SRR 1-3
Special Function:.......c..cccoovvicvivee e eccnneene. -3
111001=) SO U PO VU Ur RV VRO 14-17

WVl ittt et e e et e e e r e s e e r e e e e nnnns 7-3
Register Bank bit (RPO): . ..o 7-3

COTE] eeeiieeet e e et e e e vmnnnarnae s eeeaerensasennes 0-2ff

dedicated HIMET: ..ot 14-2

working With: ... 6-2F
registers

COTEI cereeerereirmeerree e s e esaeeeraaaaaseersenreseanessnnsen 6-2

peripheral: ..o 6-2
TEPEAL VP 100D it e 16-4
Reserve {declare) memory locations:.................... 4-4
TESET SEATLIS 1etiiiiieeeeerieeeeie e eetit e eeenee e e aesas s saaaneenees 6-3
Reset Vector: ..ooooeeeveee e, 4-2,4-4,13-§-13-9
resistance ladder: ..o 16-5
Resistance Ladder Module:........cooooooeeeeeis 12-9
resistor

Jadder: oo 16-2
Resistor, current HMIHNE: .coovoiviieiicr v 2-4
resource identifier: ..o 10-2
TEUIW L Lottt 4-77
TEELITL L. vttt e et e e eee e e e s e e rens 4-5, 4-7

INSEIUCEIONI e ciree e eeece e a e et 13-2

OPCOUET ottt e 9-5
routines

Up_volUmMe: oo 16-4
RPO (Register Bank bit): ...cooooeiiiiiiiiiiveir e 7-3
RPO or Bit Ox05: o 6-3
RPO SETTING: .o, 6-3
RUN: Lo ee et e e 14-11

DULLOIL 1oerevrrers e ce e eibe e e vree e e s sasaeeeen 14-9
S
SCK (serial clock ine)r...cooooiiiiiiiieee, 16-2
Select IS oo 8-4
Semi-colon, *;” - use in comment lines: 4-2
send_dash subroutine:coceeeve e 18-6
send_dit Subroutine: ... 18-5
serial clock Iine (SCK):...ooiviiiciiee e 16-2
Serial commuUNICALION:ccovivviiieii e eaere e, 9-8

UPLEX: ittt 16-2

Peripheral Interface Bus (SPI): ..o, 16-24f

Protocol: o e 16-2

0SNG SOFTWATE! .vvviiiiiieee e [5-4
serial data inpul line: . .o 16-2
SET i 1-3,2-4,5-3,7-3, 132
Setup Code: ..o 12-4
Seven-segment LEDS ..o 4-6
SER Labels: oo 6-3
SFR(s)

SUD CAteEOTIES: cviiiiiee v 6-2
STR(s) see also Special

Function Registers:occccorenniinieen. 1-3, 6-2, 7-3,

8-2, 8-4, 8-6 — 8-8, 13-3, 13-4, 14-3
SFR(s) to configure /O pins

ANSEL: o et 10-2
RIS A e e erae s 10-2
RIS e e 10-2
WP U A e e 10-2
short duration tmMeT:oeocvviir e eeeeieee e 14-2
SEENAL TINES: oot e 16-2
chip select line (CS): ... 16-2
serial clock line (SCK): oo 16-2
serial data input line (SI):.ovivveeierieei e 16-2
Simulated tme: ..o 9-3
SImMUlALOT: e 1-4, 3-4, 5-5,7-2
software
overhead: ... 17-5
techniques: . ..o 18-2
used for serial commuMICAHON:ovvvveveeriennen. 15-4
SOFEWATE DT 1eeeeeer e ccirr e s 18-8
Source Files folder:......covovieeieeccee e 5-5
SPDT slide switchi......ooooviiiiieiicecev e 3-6

Special Function Register
(SFR) see also SFRs:7-3, 8-4, 8-6, 10-2, 11-3
Special Function Registers

(SFRS): et 1-3, 6-21f, 7-3, §-2, §-4,
8-6—8-8, 13-3, 13-6, 14-3
ADCONO A/D Control Register:cccovenee. 113
ADCONI1 A/D Control Register: ... 11-4
ANSEL Analog Select Register:.....ccocoevan. 11-4
INTCON o, SO SUOVO 13-3
PIEL: s 13-3
PIRL: et e 13-3
S 16-7
PLOLOCOL e va et 16-24f
tEMPETATUTE SENSOTT orvvvivieeaieaevrrerressresreeeeeenens 8-4
SPI Serial Peripheral Interface Bus: .o.oovveeernenn. 16-24f
Stack: .o 13-2, 13-9, 13-10, 13-16
start of heading command:.......c.ccemevivi e 15-7
starting point
TMEO reister: oooveiiieiieet e 14.7
StAte ChANZES: \oereii e e i4-2
Static npumerical Vallue: ... 7-3
STATUS bits affected:......cccoviiivnininirnnn 7-5-"1-17
STATUS Register: oo, 6-3, 6-4, 6-8, 7-3,
13-9, 13-10 - 13-12, 13-16
SEALUS TESUILS: 1ottt e e 6-3
SHMUIUS: ... 13-12
dialog window: ..o 13-15
WINAOW: oo 13-14
STOPWATCH: .. s 14-11
WINAOW: ..ot 14-14, 15-4
Stopwatch: ..o 9-3, 9-5, 9-6, 14-8
TUNCHONS oot 9-3
Sub-routine(s):cccereenee 4-3,4-6,9-3, 13-9, 13-11

instruction cycle acCoUntng: .o..vovv v ieeerninne 9-7
SPE: rereerr e e e s a e er b ana e 16-6
SWAPE OPCOAE: wovreeriereee e 13-11
SWICH(ES): ooveeriiei e e 8-2
ClOSUTE: oieiviee it 13-16
Switches
ETANSISLOL, 1eet et ceresier e eee e e et eeeetee e e e e e eene e 17-2
SHILAKT st eiiee et e e 7-2Af
Systern clock oscillator: ... 9-8
T
TOIF - TMRO Overflow Interrupt Flag bif: 13-4
TICON (Timer 1 Control Register):.....4-5, 4-6, 14-5
T1CKS1(Timerl input Clock Prescale bit): ... 14-5
T10OSCEN (Tumer 1 Oscillator Enable Control
B v e e 14-5
TISYNC (Timer 1 External Clock Sync Control
DALY evirie e e 14-5
TMRICS (Timer 1 Clock Source Select bit): 14-5
TMRIGE (Timer 1 Gate Enable bit):............ 14-5
TMRION (Timer 1 On bit): ..ooooeoivecierciiene. 14-5
Template:.....cooooviiiieic 5-2ff
PLOZLAIL 1o ecire e e ee e s 5-6
TEMPLATE FOR THE P16F676.ASM file: 5-5
Tt BYLe! et e e 4-4
Text conventions: ...ooiveiee e e eeieee e e 1-3
Time
FUNCHION: weoee e 9-3
INEETVAL oottt s esaeas 14-2
1101 =S USROS 11-6
time interval: ..., 14-10 -~ 14-11
Time_tweek . e 4-6
B 054 T-] YOS 8-4
MOAUIE(E): oot 2-5
TESOUICES e enreeeeeeeeaeenreevesermrerernssmnrneees 8-5,18-5
TIMEr 1 [eSOUICES: .. oo eeimeete et e 6-2ff
Timer resources setup
dah: 18-6
Qi o 18-5
Timer0 - internal timer module:.......cocovvvvreeernenne 2-5
Timerl - internal timer module:...............ooeoeenecee 2-5
Timers
Independent: ... 2-2
Tnternal: e 2-2
Timing delay routines:cocoveeeveiieeereeercreecsieerenens 4-6
timing issues, critical:veverveeiiecrcrrnnee 14-9
TMRO: e, 6-4,9-7,13-2,14-2, 14-4,
14-8, 14-10, 14-11, 14-16, 14-17
INEETTUPTE TESOUICE! ..eeetrrrereerrennernenresnennearene 14-15
PLOJECL: coveirreeeeccc e e 14-74f
TEZISTET: vvevevrrreeer e e e 14-9, 14-10 - 14-11, 16-4

s

TMRO.asm filer oo 14-13
TMRO_SCalE: oo 14-13
TMRI: e, 13-2,14-2, 14-5, 14-16
interrupt Interval: oo 14-15
[NEEITUPT TESOULTE evenrreceeerereae e eceecee e 14-15
RESOUITE: vvvivieerieeeiieeeieei e e 14-14
SEIUPL oo 14-5
11711 o SO P U RO OO P OO U PR UPU 9-7
TMRI interrupt service SeCtion ... 18-7
THIOT] COUNE: vveeeeeeereeeeeieeee e er e eeereees b ereeanns 4-6
TMRIH: ..o e 1422, 14-156F
TMRIIF
(TMR 1 Overflow Interrupt Flag bit):............ 13-5,
14-5, 14-16
TMRIL: (oo 14-2, 14-15
TIMRION: oo 4-6
transistor SWItCh: .oovvee e 18-2
transistor SWitches: ... 17-2
TEANSITUE O cevvieiieei e eesev e e e 4-4, 4-6
transmikter EQUIPIICIIE «..ovvverercecreccrsrcereseanreas 18-2
Tri-state REZISIEr: . oot en e, 10-3
Tri-state Register TRISA PORTA:...............6-6 — 6-7
Tri-state Register TRISC PORTC:............... 6-6 - 6-7
TRISA: oot 6-8
TRISA PORTA Tri-state Register:............ 6-6 - 6-7,
10-2 - 10-3°
TRISA register:cceeicerennennne . 2-5,6-6--6-7,13-8

TRISC PORTC Tri-state Register:......6-6 — 6-7; 10-3
Truth Table

7-Segment LED ..o 17-3

AND Operatlon:cccoioeiieicccec e, 7-5

Comparator Inverted:occonniicnernrennn 12-6

Comparator Non-Inverted:coccovviniiceeee 12-&

OR Operation:cocvrveeeverinnricnnrenrine e 7-10
10T g eT=Ts HEe) 1 USROS 4-6
tWEEKZO0MIST .. oeeeee e et e 4-7
U
Umbrella segment: ... e 4-6
UP_vOlIME TOULINES: .oveeceereicice e 16-4
USB €able: civiiceeirsrieeerrenrnee e e 33
USB drivVer: oot 3-3
User interface push buttons: ... 8-4
v
value

OHFBel: o 17-5
variable

COUMLET: 1evvriereverer e e e e e rt e e nene s 17-4

1aDELS: e e 4-2

TESISTON 1o 12-8,12-9

VARIABLE LABELS:...........oooovviiir it 9-4

Variables: ..o 4-4,9-5
VT e e e 2-3
Vg (F V) e 2-3
Ve wnmne et e e et ettt et e e eseea e na e ereeanetaenes 2-3
VIEW: e s 9-3
View/Program Memory:ccovereeiinnienrieens 3-4
voltage

apPlied: oo 11-2

divider Circuit: ..o 129

OULPULL Loiiiveir v ceeree e cessrer s e e s 11-2

1S (=1 170 Lot~ OO 11-2, 11-3

EXLEITIAL -.oervicreeie e 11-3, 12-9
[UEST ¥ 1 F=1 RSOV 12-9ff

TEEUIALOL! Lo e e 3-6

SENSEAL ...eeeiiee s cirecie e sti st a st ebr e 11-2

SEALED oo ccte et ce e e e e e srr e e enes 1-3
voltage levers

analog or digital: ...t 10-2
Voltage Reference Control Register

VRCON: et 12-3, 12-94f
voltage reference range:ccoccceevvevnnrvieninens 12-3
L6101] TR PR URURORUON 11-8
volume

COMITOL: vttt 16-7

data byte: .o 16-5

VALIADIE 1o 16-5
VOM Volt Ohm Milliammeter:ocoeeeeeeeneennn.. 12-6
VRO CVref Value Selection:......ooovveeemeeeeeeeeennn. 12-3
VRI1 CVref Value Selection:ooovveeevcenceiennnes 12-3
VR2 CVref Value Selection:......o..oveeeeeioeeinneene 12-3
VR3 CVref Value Selection:ooveveeeeceioeieciene 12-3
VRCON Voltage Reference Control

Register: .o 12-3, 12-9ff
VREN CVref Enable bit: .o 12-3
VRR CVref Range Selection bit:......ccocevienieenene. 12-3

w
W (WOTKINE) TEZISe . vevi it 6-6
W-REZISIEL! 1o 15-5

W-TEZISEET voveeereveriiacsiereann 1-3, 8-6, 10-4, 11-6, 13-8,
13-9, 13-11, 13-12, 13-16, 15-4,
16-5, 16-6, 17-4, 17-5, 18-7

WATCH: ..o 9-4, 14-8, 14-14, 17-5
WINAOW: o s 15-4
Watch Dog Timer
Oofft 8-4
Watch Dog Timer (WDT): ... 4-3,6-4, 14-7
Watch window(s):ccccooeeeenn 3-4,9-3,13-12, 14-8
WDT (Watch Dog Timer): ..o 4-3, 6-4, 14-7
weak pull-Up: oo 10-7
weak pull-up resistors:c.cccccreenen.0-4, 8-5, 8-8
Windows Notepad: ..., 4-3
wiper
INLEIMIAL (o nie s 16-2
OUEPUL PINI coiirieicce e 16-2
POSIHON: ca ettt 16-5
WIZATA: oot eerneaes 3-4, 5-2ff
WPUA: e e 6-5, 8-8
DL e 10-3
Pull-up Register:.......ccovviinvininininninnnienne 6-3
TEZISLET I oo veeevrecreien et 6-8, 8-8, 13-8
Weak Pull-up Register:...o.coiinicvniinnenn. 10-3
X
XOTWET ottt 13-8
Z
Z DALl e 6-4
ZETO DIl 7-3
ZIF 80CKEt: (i 3-7

	scan0001
	scan0002
	scan0003
	scan0004
	scan0005
	scan0006
	scan0007
	scan0008
	scan0009
	scan0010
	scan0011
	scan0012
	scan0013
	scan0014
	scan0015
	scan0016
	scan0017
	scan0018
	scan0019
	scan0020
	scan0021
	scan0022
	scan0023
	scan0024
	scan0025
	scan0026
	scan0027
	scan0028
	scan0029
	scan0030
	scan0031
	scan0032
	scan0033
	scan0034
	scan0035
	scan0036
	scan0037
	scan0038
	scan0039
	scan0040
	scan0041
	scan0042
	scan0043
	scan0044
	scan0045
	scan0046
	scan0047
	scan0048
	scan0049
	scan0050
	scan0051
	scan0052
	scan0053
	scan0054
	scan0055
	scan0056
	scan0057
	scan0058
	scan0059
	scan0060
	scan0061
	scan0062
	scan0063
	scan0064
	scan0065
	scan0066
	scan0067
	scan0068
	scan0069
	scan0070
	scan0071
	scan0072
	scan0073
	scan0074
	scan0075
	scan0076
	scan0077
	scan0078
	scan0079
	scan0080
	scan0081
	scan0082
	scan0083
	scan0084
	scan0085
	scan0086
	scan0087
	scan0088
	scan0089
	scan0090
	scan0091
	scan0092
	scan0093
	scan0094
	scan0095
	scan0096
	scan0097
	scan0098
	scan0099
	scan0100
	scan0101
	scan0102
	scan0103
	scan0104
	scan0105
	scan0106
	scan0107
	scan0108
	scan0109
	scan0110
	scan0111
	scan0112
	scan0113
	scan0114
	scan0115
	scan0116
	scan0117
	scan0118
	scan0119
	scan0120
	scan0121
	scan0122
	scan0123
	scan0124
	scan0125
	scan0126
	scan0127
	scan0128
	scan0129
	scan0130
	scan0131
	scan0132
	scan0133
	scan0134
	scan0135
	scan0136
	scan0137
	scan0138
	scan0139
	scan0140
	scan0141
	scan0142
	scan0143
	scan0144
	scan0145
	scan0146
	scan0147
	scan0148
	scan0149
	scan0150
	scan0151
	scan0152
	scan0153
	scan0154
	scan0155
	scan0156
	scan0157
	scan0158
	scan0159
	scan0160
	scan0161
	scan0162
	scan0163
	scan0164
	scan0165
	scan0166
	scan0167
	scan0168
	scan0169
	scan0170
	scan0171
	scan0172
	scan0173
	scan0174
	scan0175
	scan0176
	scan0177
	scan0178
	scan0179
	scan0180
	scan0181
	scan0182
	scan0183
	scan0184
	scan0185
	scan0186
	scan0187
	scan0188
	scan0189
	scan0190
	scan0191
	scan0192
	scan0193
	scan0194
	scan0195
	scan0196
	scan0197
	scan0198
	scan0199
	scan0200
	scan0201
	scan0202
	scan0203
	scan0204
	scan0205
	scan0206
	scan0207
	scan0208
	scan0209
	scan0210
	scan0211
	scan0212
	scan0213
	scan0214
	scan0215
	scan0216
	scan0217
	scan0218
	scan0219
	scan0220
	scan0221
	scan0222
	scan0223
	scan0224
	scan0225
	scan0226
	scan0227
	scan0228
	scan0229
	scan0230
	scan0231
	scan0232
	scan0233
	scan0234
	scan0235
	scan0236
	scan0237
	scan0238
	scan0239
	scan0240
	scan0241
	scan0242
	scan0243
	scan0244
	scan0245
	scan0246
	scan0247
	scan0248
	scan0249
	scan0250
	scan0251
	scan0252
	scan0253
	scan0254

